Brevetoxin Aptamer Selection and Biolayer Interferometry Biosensor Application
"> Figure 1
<p>(<b>A</b>) Chemical structures of PbTx-1, PbTx-7, and PbTx-10. (<b>B</b>) Chemical structures of PbTx-2, PbTx-3, PbTx-5, PbTx-6, PbTx-8, and PbTx-9. *Denotes likely chemical artifact from extraction.</p> "> Figure 2
<p>(<b>A</b>) Process of MB-SELEX. (<b>B</b>) Recovery ratio of ssDNA during MB-SELEX. The yellow columns represent the recovery ratio of ssDNA bound to PbTx-1 and PbTx-2. The pink columns represent the recovery ratio of ssDNA bound to PbTx-1. The purple columns represent the recovery ratio of ssDNA bound to PbTx-2. CS: Counter Selection.</p> "> Figure 3
<p>(<b>A</b>) Binding saturation curve of potential aptamer A5 to PbTx. (<b>B</b>) Binding saturation curve of potential aptamer B2 to PbTx. (<b>C</b>) Binding saturation curve of potential aptamer B17 to PbTx. (<b>D</b>) Binding saturation curve of the random sequence to PbTx.</p> "> Figure 4
<p>(<b>A</b>) Secondary structure of aptamer A5. (<b>B</b>) Secondary structure of aptamer A5-S1. (<b>C</b>) Secondary structure of aptamer A5-S2. (<b>D</b>) Secondary structure of aptamer A5-S3. (<b>E</b>) Secondary structure of aptamer A5-S3G. (<b>F</b>) Secondary structure of aptamer B2. (<b>G</b>) Secondary structure of aptamer B2-S1. (<b>H</b>) Secondary structure of aptamer B2-S2. (<b>I</b>) Secondary structure of aptamer B2-S1G.</p> "> Figure 5
<p>(<b>A</b>) Characterization of aptamer A5-S3G. (<b>B</b>) Principle of BLI aptasensor. (<b>C</b>) Working procedure of BLI aptasensor.</p> "> Figure 6
<p>(<b>A</b>) The BLI aptasensor’s response to PbTx-1 at increased concentrations (100–4000 nM). (<b>B</b>) The calibration curve of the BLI aptasensor’s response to PbTx-1 at different concentrations (100–4000 nM). The error bars display standard deviations. (<b>C</b>) The linear range of the calibration curve for PbTx-1. The error bars display standard deviations. (<b>D</b>) The specificity of the aptasensor. The error bars display standard deviations. *** <span class="html-italic">p</span> < 0.001, vs. PbTx-1 (control).</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Selection of DNA Aptamers Specific to PbTx-1 and PbTx-2
2.2. Binding Affinity between Potential Aptamer and PbTx
2.3. Optimization of Aptamers
2.4. Characterization of Aptamer A5-S3G
2.5. BLI Aptasensor for PbTx-1 Detection
2.6. Detection of PbTx-1 in Shellfish Samples
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Preparation of Magnetic Beads Coupled with PbTx
5.2. In Vitro Selection of DNA Aptamers
5.3. Saturation Curve of Potential PbTxs Aptamer
5.4. Determination of Aptamer Binding Affinity
5.5. BLI Aptasensor Preparation
5.6. PbTx-1 Extraction from Shellfish Tissue
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bean, J.A.; Fleming, L.E.; Kirkpatrick, B.; Backer, L.C.; Nierenberg, K.; Reich, A.; Cheng, Y.S.; Wanner, A.; Benson, J.; Naar, J.; et al. Florida Red Tide Toxins (Brevetoxins) and Longitudinal Respiratory Effects in Asthmatics. Harmful Algae 2011, 10, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, P.; Kirkpatrick, B.; Jin, D.; Kirkpatrick, G.; Fleming, L.E.; Ullmann, S.G.; Beet, A.; Hitchcock, G.; Harrison, K.K.; Li, Z.C.; et al. Lessening the Hazards of Florida Red Tides: A Common Sense Approach. Front. Mar. Sci. 2020, 7, 538. [Google Scholar] [CrossRef]
- Baden, D.G.; Bourdelais, A.J.; Jacocks, H.; Michelliza, S.; Naar, J. Natural and Derivative Brevetoxins: Historical Background, Multiplicity, and Effects. Environ. Health Perspect. 2005, 113, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, G.L.; Fourqurean, J.W.; Drake, J.L.; Mead, R.N.; Heil, C.A. Brevetoxin Persistence in Sediments and Seagrass Epiphytes of East Florida Coastal Waters. Harmful Algae 2012, 13, 89–94. [Google Scholar] [CrossRef]
- Brevetoxin A|C49h70o13-Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/brevetoxin-a#section=2d-structure (accessed on 12 May 2024).
- Brevetoxin B|C50h70o14-Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/brevetoxin-b#section=2d-structure (accessed on 12 May 2024).
- Wong, C.K.; Hung, P.; Kam, K.M. Development of an Icr Mouse Bioassay for Toxicity Evaluation in Neurotoxic Poisoning Toxins-Contaminated Shellfish. Biomed. Environ. Sci. 2013, 26, 346–364. [Google Scholar]
- Xiaowei, Z.; Zhaoxiang, Z. Capillary Electrophoresis-Based Immunoassay for the Determination of Brevetoxin-B in Shellfish Using Electrochemical Detection. J. Chromatogr. Sci. 2013, 51, 107–111. [Google Scholar]
- Plakas, S.M.; Jester, E.L.E.; El Said, K.R.; Granade, H.R.; Abraham, A.; Dickey, R.W.; Scott, P.S.; Flewelling, L.J.; Henry, M.; Blum, P.; et al. Monitoring of Brevetoxins in the Karenia brevis Bloom-Exposed Eastern Oyster (Crassostrea virginica). Toxicon 2008, 52, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Amzil, Z.; Derrien, A.; Terrillon, A.T.; Duval, A.; Connes, C.; Marco-Miralles, F.; Nézan, E.; Mertens, K. Monitoring the Emergence of Algal Toxins in Shellfish: First Report on Detection of Brevetoxins in French Mediterranean Mussels. Mar. Drugs 2021, 19, 393. [Google Scholar] [CrossRef]
- Ling, S.M.; Xiao, S.W.; Xie, C.J.; Wang, R.Z.; Zeng, L.M.; Wang, K.; Zhang, D.P.; Li, X.L.; Wang, S.H. Preparation of Monoclonal Antibody for Brevetoxin 1 and Development of Ic-Elisa and Colloidal Gold Strip to Detect Brevetoxin 1. Toxins 2018, 10, 75. [Google Scholar] [CrossRef]
- Flewelling, L.J.; Corcoran, A.A.; Granholm, A.A.; Takeuchi, N.Y.; Van Hoeck, R.V.; Zahara, M.L. Validation and Assessment of an Enzyme-Linked Immunosorbent Assay (Elisa) for Use in Monitoring and Managing Neurotoxic Shellfish Poisoning. J. Shellfish Res. 2020, 39, 491–500. [Google Scholar] [CrossRef]
- Cunningham, B.R.; Coleman, R.M.; Schaefer, A.M.; Hamelin, E.I.; Johnson, R.C. Detection of Brevetoxin in Human Plasma by Elisa. J. Anal. Toxicol. 2022, 46, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Liu, T.M.; Zhang, W.M.; Zhu, M.Z.; Liu, Z.M.; Kong, Y.L.; Liu, S. Marine Toxins Detection by Biosensors Based on Aptamers. Toxins 2020, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.I.; Machado, I.; Schäfer, T.; Hernandez, F.J. Aptamers Overview: Selection, Features and Applications. Curr. Top. Med. Chem. 2015, 15, 1066–1081. [Google Scholar] [CrossRef] [PubMed]
- Saito, S. Selex-Based DNA Aptamer Selection: A Perspective from the Advancement of Separation Techniques. Anal. Sci. 2021, 37, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.Y.; Yan, X.C.; Zhao, L.H.; Huang, Y.F.; Wang, S.; Liang, X.G. A Facile Label-Free Electrochemical Aptasensor Constructed with Nanotetrahedron and Aptamer-Triplex for Sensitive Detection of Small Molecule: Saxitoxin. J. Electroanal. Chem. 2020, 858, 113805. [Google Scholar] [CrossRef]
- Caglayan, M.O.; Üstündag, Z. Saxitoxin Aptasensor Based on Attenuated Internal Reflection Ellipsometry for Seafood. Toxicon 2020, 187, 255–261. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.D.; Ma, L.N.; Liu, D.J.; Wang, Z.X. A Label-Free Electrochemical Impedance Aptasensor for Cylindrospermopsin Detection Based on Thionine-Graphene Nanocomposites. Analyst 2015, 140, 5570–5577. [Google Scholar] [CrossRef]
- Gao, S.X.; Hu, B.; Zheng, X.; Cao, Y.; Liu, D.J.; Sun, M.J.; Jiao, B.H.; Wang, L.H. Gonyautoxin 1/4 Aptamers with High-Affinity and High-Specificity: From Efficient Selection to Aptasensor Application. Biosens. Bioelectron. 2016, 79, 938–944. [Google Scholar] [CrossRef]
- Gao, S.X.; Zheng, X.; Hu, B.; Sun, M.J.; Wu, J.H.; Jiao, B.H.; Wang, L.H. Enzyme-Linked, Aptamer-Based, Competitive Biolayer Interferometry Biosensor for Palytoxin. Biosens. Bioelectron. 2017, 89, 952–958. [Google Scholar] [CrossRef]
- Yue, W.; Lin, B.Y.; Huang, Y.Y.; Wang, Y.L.; Yao, Y.Y.; Chen, L.F.; Zeng, Y.B.; Li, L.; Qian, Z.S.; Guo, L.H. Toxicity Evaluation of Mc-Lr in Different Fish Organs Based on Aptamer-Recognized Sers Tag Coupled with Magnetic Separation. Sens. Actuators B Chem. 2023, 380, 133319. [Google Scholar] [CrossRef]
- Cao, H.Y.; Dong, W.F.; Wang, T.L.; Shi, W.B.; Fu, C.C.; Wu, Y. Aptasensor Based on MoS2 Quantum Dots with Upconversion Fluorescence for Microcystin-Lr Detection Via the Inner Filter Effect. ACS Sustain. Chem. Eng. 2020, 8, 10939–10946. [Google Scholar] [CrossRef]
- Eissa, S.; Siaj, M.; Zourob, M. Aptamer-Based Competitive Electrochemical Biosensor for Brevetoxin-2. Biosens. Bioelectron. 2015, 69, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.Y.; Lin, C.; Yu, S.Y.; Gong, S.; Hu, P.; Li, Y.S.; Wu, Z.C.; Gao, Y.; Zhou, Y.; Liu, Z.S.; et al. Preparation of a Specific ssDNA Aptamer for Brevetoxin-2 Using Selex. J. Anal. Methods Chem. 2016, 2016, 9241860. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, M.O.; Üstündag, Z.; Sahin, S. Spectroscopic Ellipsometry Methods for Brevetoxin Detection. Talanta 2022, 237, 122897. [Google Scholar] [CrossRef]
- Ramalingam, S.; Hayward, G.L.; Singh, A. A Reusable Qcr Aptasensor for the Detection of Brevetoxin-2 in Shellfish. Talanta 2021, 233, 122503. [Google Scholar] [CrossRef]
- Afanasyeva, A.; Nagao, C.; Mizuguchi, K. Prediction of the Secondary Structure of Short DNA Aptamers. Biophys. Physicobiology 2019, 16, 287–294. [Google Scholar] [CrossRef]
- Roxo, C.; Kotkowiak, W.; Pasternak, A. G-Quadruplex-Forming Aptamers-Characteristics, Applications, and Perspectives. Molecules 2019, 24, 3781. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Hu, B.; Pei, X.M.; Li, J.; Qi, D.; Xu, Y.X.; Ou, H.L.; Wu, Y.T.; Xue, L.; Huang, J.H.; et al. A Non-G-Quadruplex DNA Aptamer Targeting Ncl for Diagnosis and Therapy in Bladder Cancer. Adv. Healthc. Mater. 2023, 12, e2300791. [Google Scholar] [CrossRef] [PubMed]
- Tsukakoshi, K.; Yamagishi, Y.; Kanazashi, M.; Nakama, K.; Oshikawa, D.; Savory, N.; Matsugami, A.; Hayashi, F.; Lee, J.; Saito, T.; et al. G-Quadruplex-Forming Aptamer Enhances the Peroxidase Activity of Myoglobin against Luminol. Nucleic Acids Res. 2021, 49, 6069–6081. [Google Scholar] [CrossRef]
- Concepcion, J.; Witte, K.; Wartchow, C.; Choo, S.; Yao, D.F.; Persson, H.; Wei, J.; Li, P.; Heidecker, B.; Ma, W.L.; et al. Label-Free Detection of Biomolecular Interactions Using Biolayer Interferometry for Kinetic Characterization. Comb. Chem. High Throughput Screen. 2009, 12, 791–800. [Google Scholar] [CrossRef]
- Overacker, R.D.; Plitzko, B.; Loesgen, S. Biolayer Interferometry Provides a Robust Method for Detecting DNA Binding Small Molecules in Microbial Extracts. Anal. Bioanal. Chem. 2021, 413, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Appendix 5: Fda and Epa Safety Levels in Regulations and Guidance to Safety Attributes of Fish and Fishery Products, 2021. Available online: https://www.fda.gov/media/80400/download (accessed on 1 June 2021).
- Eissa, S.; Zourob, M. A Graphene-Based Electrochemical Competitive Immunosensor for the Sensitive Detection of Okadaic Acid in Shellfish. Nanoscale 2012, 4, 7593–7599. [Google Scholar] [CrossRef] [PubMed]
Aptamer | Target | Aptamer Sequence | KD (μM) |
---|---|---|---|
A5 | PbTx-1 | ATACCAGCTTATTCAATTCTCCAACTTTCAGTAACCCTCGGATAAAACCGCTCGGCCGCGTTACACTATGCGCCCTCGAGATAGTAAGTGCAATCT | 2.56 |
A5-S1 | PbTx-1 | CTCCAACTTTCAGTAACCCTCGGATAAAACCGCTCGGCCGCGTTACACTATGCGCCCTCG | 1.66 |
A5-S2 | PbTx-1 | TCGGATAAAACCGCTCGGCCGCGTTACACTATGCGCCCTCG | 0.343 |
A5-S3 | PbTx-1 | TCGGATAAAACCGGGCCGCGTTACACTATGCG | 0.178 |
A5-S3G | PbTx-1 | TCGGATAAAACCGGGCGGCGTTACACTAGGCG | 0.072 |
B2 | PbTx-2 | ATACCAGCTTATTCAATTCCCAGGCACGACCAGTAAGGTCTGGTAGACTAAACGAACGAGATACCGCGACATACCTCGAGATAGTAAGTGCAATCT | 2.21 |
B2-S1 | PbTx-2 | ATACCAGCTTATTCAATTCCCAGGCACGACCAGTAAGGTCTGGTAGACTAAACGAACGAGATACCGCGACATACCTCGAGAT | 1.63 |
B2-S2 | PbTx-2 | CCCAGGCACGACCAGTAAGGTCTGGTAGACTAAACGAACGAGATACCGCGACATACCTCGAGAT | --- |
B2-S1G | PbTx-2 | ATACCGGCTTATTCAATTCCCAGGCAGGACCAGTAAGGTCTGGTAGGCTAAACGAACGAGATACCGCGACATACCTCGAGGT | 0.76 |
Shellfish Samples | Spiked Shellfish PbTx-1 (ng/mL) | Recovery (%) | CV (%) |
---|---|---|---|
1 | 200 | 104.09 | 1.62 |
2 | 600 | 106.87 | 1.83 |
3 | 1400 | 108.32 | 3.72 |
Analytical Techniques a | Targets | Linear Range | LOD | Reference |
---|---|---|---|---|
ELISA | PbTx-2 | 3.51–225 nM | Not reported | [25] |
ELISA | PbTx-1 | 15.70–295 nM | 15.70 nM | [11] |
ELISA | PbTx-3 | 0.05–2.25 nM | Not reported | [13] |
EIS | PbTx-2/PbTx-3 | Not reported | 0.12 nM | [24] |
QCM | PbTx-2 | 10–1000 nM | 220 nM | [27] |
SE | PbTx-2 | 0.05–1600 nM | 1.48 nM | [26] |
TIRE | PbTx-2 | 0.50–2000 nM | 0.80 nM | [26] |
BLI | PbTx-1 | 100–2000 nM | 4.50 nM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Ouyang, S.-Q.; Zhu, Y.-P.; Lu, X.-L.; Ning, Z.; Jiao, B.-H.; Wang, L.-H.; Yu, H.-B.; Liu, X.-Y. Brevetoxin Aptamer Selection and Biolayer Interferometry Biosensor Application. Toxins 2024, 16, 411. https://doi.org/10.3390/toxins16100411
Hu B, Ouyang S-Q, Zhu Y-P, Lu X-L, Ning Z, Jiao B-H, Wang L-H, Yu H-B, Liu X-Y. Brevetoxin Aptamer Selection and Biolayer Interferometry Biosensor Application. Toxins. 2024; 16(10):411. https://doi.org/10.3390/toxins16100411
Chicago/Turabian StyleHu, Bo, Sheng-Qun Ouyang, Yu-Ping Zhu, Xiao-Ling Lu, Zhe Ning, Bing-Hua Jiao, Liang-Hua Wang, Hao-Bing Yu, and Xiao-Yu Liu. 2024. "Brevetoxin Aptamer Selection and Biolayer Interferometry Biosensor Application" Toxins 16, no. 10: 411. https://doi.org/10.3390/toxins16100411
APA StyleHu, B., Ouyang, S.-Q., Zhu, Y.-P., Lu, X.-L., Ning, Z., Jiao, B.-H., Wang, L.-H., Yu, H.-B., & Liu, X.-Y. (2024). Brevetoxin Aptamer Selection and Biolayer Interferometry Biosensor Application. Toxins, 16(10), 411. https://doi.org/10.3390/toxins16100411