A Monoclonal Antibody with a High Affinity for Ricin Isoforms D and E Provides Strong Protection against Ricin Poisoning
<p>Neutralizing capacity of new generation mAbs on Jurkat cells. Ricin was applied at a final concentration sufficient to induce over 95% of cell death, and mAbs at concentrations varying from 500 pg/mL to 100 µg/mL. (<b>a</b>) Neutralization of an equimolar mixture of ricin D and E. Selected anti-ricin mAbs identified in the screening on ricin D + E were evaluated for (<b>b</b>) neutralization of ricin D and (<b>c</b>) neutralization of ricin E. (<b>d</b>) 50% inhibitory concentration (IC<sub>50</sub>) of mAb measured for each test on Jurkat cells. Each point is a mean ± SD of two independent experiments (<b>a</b>) (except for RicE1, RicE2, RicE3, and 43RCA-G1 (one experiment)) or of technical replicates from one experiment (<b>b</b>,<b>c</b>). ND: not detectable, NT: not tested.</p> "> Figure 2
<p>Evaluation of mAb binding specificity to RTA or RTB using sandwich ELISA (<b>a</b>) The binding capacities of RicE4, RicE5, RicE7, RicE8, RA35 (anti-RTA antibody control) and RB34 (anti-RTB antibody control) [<a href="#B27-toxins-16-00412" class="html-bibr">27</a>,<a href="#B28-toxins-16-00412" class="html-bibr">28</a>] to RTA were assessed. The signal is normalized to the maximum binding measured with RA35 for RTA. (<b>b</b>) The binding capacities of the same mAbs to RTB were evaluated. The signal is normalized to the maximum binding measured with RB34 for RTB.</p> "> Figure 3
<p>Neutralization curves of mAbs or mAb combinations of an equimolar mixture of ricin D and E on Jurkat cells. Cells were incubated with the ricin mixture at a final concentration of 10 CD<sub>50</sub> and mAbs at concentrations varying from 500 pg/mL to 100 µg/mL for each experiment. Each point is a mean ± SD of at least three independent experiments. (<b>a</b>) Comparison of neutralizing abilities between first-generation and second-generation mAbs. 43RCA-G1, RB34, RicE4, RicE5, RicE8. (<b>b</b>) Neutralizing capacities of RicE5 and RicE8 compared to their equimolar combination RicE5 + RicE8. (<b>c</b>) Neutralizing capacities of RicE5 and RB34 compared to their equimolar combination RicE5 + RB34.</p> "> Figure 4
<p>Neutralizing efficacies of RicE5 and RicE8 against ricin D + E in Vero, A549, and Jurkat cells. Each experiment was repeated at least three times. Representative curves of in vitro neutralization of an equimolar ricin D and E solution at 10 CD<sub>50</sub> by RicE5 (<b>a</b>) and RicE8 (<b>c</b>). Each point is a mean ± SD. Mean IC<sub>50</sub> values ± SEM and mAb:ricin molar ratio at the IC<sub>50</sub> ± SEM of RicE5 (<b>b</b>) and RicE8 (<b>d</b>). Statistical analysis: One-way ANOVA with Tukey’s post-hoc test. RicE5 or RicE8 IC<sub>50</sub> values or molar ratios for Jurkat cells, are compared to IC<sub>50</sub> values or molar ratios for A549 and Vero cells. ns: not statistically significant, *: <span class="html-italic">p</span> < 0.05, **: <span class="html-italic">p</span> < 0.01, ***: <span class="html-italic">p</span> < 0.001, ****: <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>Survival rates of mice treated 6 h post-intoxication. RicE5 and RicE5 + RicE8 were tested in four independent experiments, RicE8 and RB34 + 43RCA-G1 in two independent experiments, and ricin controls in six independent experiments. The other groups were evaluated in a single experiment. The survival rates of the different treatment groups were compared to those of the control group. <span class="html-italic">n</span> = number of mice tested in total (8 to 10 mice per group per experiment). Statistical analysis: Log-rank (Mantel-Cox). ns: not statistically significant, *: <span class="html-italic">p</span> < 0.05, **: <span class="html-italic">p</span> < 0.01, ****: <span class="html-italic">p</span> < 0.0001.</p> "> Figure 6
<p>Survival curves of mice treated with RicE5 or RicE5 + RicE8 at 10 mg/kg at various time points (6, 10, 18, and 24 h) following intoxication with 5 LD<sub>50</sub> of ricin D + E. The data are pooled from multiple experiments (8 to 10 mice per treatment group per experiment); <span class="html-italic">n</span> = total number of mice treated per group. For the control group exposed to 5 LD<sub>50</sub> of ricin, the number of mice per experiment was 5 or 10 mice. Survival rates of the treatment groups were compared with the control group, and comparisons were also made between the different treatments at each time point. Statistical analysis: Log-rank (Mantel-Cox). ns: not statistically significant, ***: <span class="html-italic">p</span> < 0.001; ****: <span class="html-italic">p</span> < 0.0001. The time of injection post-intoxication is indicated in the legend.</p> "> Figure 7
<p>Evaluation of circulating anti-ricin antibodies in mouse plasma. (<b>a</b>) Concentration evolution of anti-ricin antibodies in mouse plasma over 300 days. Average concentration (mean ± SEM) of circulating anti-ricin antibodies in the plasma of mice exposed to 5 LD<sub>50</sub> of ricin treated with 10 mg/kg, 6 h after intoxication, and which subsequently survived (treatments detailed in the legend, <span class="html-italic">n</span> represents the number of surviving mice per group). Blood samples were collected monthly for 10 months. Statistical analysis: two-way ANOVA was performed using Tukey’s multiple comparison test. Only the statistics for the comparison of the group treated with one mAb (RicE5, orange line) and the group treated with three mAbs (RicE5 + RB34 + 43RCA-G1, blue line) are represented here. Other comparisons are represented in <a href="#app1-toxins-16-00412" class="html-app">Figure S4</a>. ns: not statistically significant, *: <span class="html-italic">p</span> < 0.05, **: <span class="html-italic">p</span> < 0.01. (<b>b</b>) Concentration evolution of the RicE5 + RicE8 mixture in mice plasma over 300 days (only quantifiable samples are shown). Plasma samples from 10 individual mice were measured using ELISA. Mice received a single i.v. injection of mAbs (RicE5 + RicE8, 10 mg/kg), and blood samples were collected monthly for 10 months. (<b>c</b>) Evaluation of the neutralizing efficacy of an equimolar mixture of ricin D and E at 10 CD<sub>50</sub> using pooled plasma. The plasma samples evaluated were collected before the second exposure to ricin. Each point is a mean ± SD of at least two technical replicates from one experiment.</p> "> Figure 8
<p>Comparison of clinical signs in mice following initial and second exposure to 5 LD<sub>50</sub> ricin 10 months apart. Each point of the graph represents the average clinical score of the surviving mice within each group, plotted as the mean ± SD. For the initial exposure, mice received a dose of 5 LD<sub>50</sub> of ricin D + E, followed by treatment with mAbs at 10 mg/kg 6 h later (or PBS for the “ricin control 5 LD<sub>50</sub>” group). For the second exposure, 10 months after the first exposure, surviving mice were re-exposed to 5 LD<sub>50</sub> of ricin via the i.n. route with no subsequent treatment. A “ricin control 5 LD<sub>50</sub>” group was included for the second exposure as well. No mice from either control group survived. <span class="html-italic">n</span> = number of mice per group that received both exposures. Statistical analysis was performed using a paired <span class="html-italic">t</span>-test to compare the maximum clinical scores across all groups on days 3, 4, and 5 after the initial and the second exposure. *: <span class="html-italic">p</span> < 0.05, **: <span class="html-italic">p</span> < 0.01, ***: <span class="html-italic">p</span> < 0.001.</p> "> Figure 9
<p>Titration of anti-ricin antibodies in the plasma of mice that survived two exposures to ricin, each at 5 LD<sub>50</sub>, with a 10-month interval between exposures. Plasma samples from mice that received the same treatment after their initial exposure were pooled for analysis (equal volume from each mouse within the same group; details of the groups are provided in the legend, with <span class="html-italic">n</span> representing the number of mice per group). Blood samples were collected two weeks prior to the second exposure and 21 days after re-exposure. A paired <span class="html-italic">t</span>-test was performed to compare the levels of anti-ricin antibodies before and after the second re-exposure across all groups. **: <span class="html-italic">p</span> < 0.01.</p> "> Figure 10
<p>Correlation between the in vivo survival and the IC<sub>50</sub> of mAb or mAb combinations against ricin D + E isoform mixture (1:1). The survival rate of mice injected with antibodies at 10 mg/kg 6 h post-ricin exposure was plotted against the mean IC<sub>50</sub> value obtained from in vitro neutralization assays in Jurkat cells. Green: protective mAb or mAb combinations, orange: moderately protective, red: not protective.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Production and Selection of a New Generation of Anti-Ricin Monoclonal Antibodies (mAbs)
2.1.1. Screening for In Vitro Neutralizing Capacity of mAbs
2.1.2. Binding Kinetics of mAbs to Ricin Isoforms and Antibody Chain Specificity
2.2. In-Depth Analysis of the In Vitro Neutralizing Capacity of the Two Selected mAbs
2.2.1. In Vitro Neutralizing Capacity of Individual mAbs RicE5 and RicE8 and Their Combinations
2.2.2. In Vitro Neutralizing Capacity of RicE5 and RicE8 across Various Cell Lines
2.3. In Vivo Protective Capacity
2.3.1. Treatments 6 h after Intoxication
2.3.2. Treatments at 10 h, 18 h and 24 h after Intoxication and Addition of Anti-Inflammatory Molecules
2.4. Induced Long-Term Immunity to Ricin Elicited by Passive Immunotherapy
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Ethics Statement
5.2. Reagents
5.2.1. Ricin Extracts
5.2.2. Preparation of Inactivated Ricin E for Mice Immunization
5.2.3. Reagents for Enzyme Immuno-Assay (EIA)
5.3. Production of Monoclonal Anti-Ricin Antibodies (mAbs)
5.3.1. Mice Immunization and Hybridoma Production
5.3.2. Evaluation of the Polyclonal Response in Mouse Plasma Following Immunization
5.3.3. mAb Purification and Recombinant Antibody Production
5.4. Cell Viability Assays
5.4.1. Cell Growth Conditions
5.4.2. Determination of the 50% Cytotoxic Dose (CD50) of Ricin in Various Cell Lines
5.4.3. Evaluation of Antibody Neutralizing Efficacy against Ricin
5.5. Bio-Layer Interferometry Measurements
5.6. Evaluation of Ricin-Chain Binding Specificity by Enzyme Immuno-Assay (EIA)
5.7. Animal Experiments
5.7.1. Passive Immunotherapy Protection Experiments
5.7.2. Evaluation of Active Immune Response Induction
5.8. Characterization of the Induced Long-Term Immunity against Ricin in Mice
5.8.1. Evaluation of the Polyclonal Response against Ricin in Murine Plasma by EIA
5.8.2. Pharmacokinetics of mAb RicE5 + RicE8 Combination
5.8.3. Evaluation of the Neutralizing Capacity of the Murine Plasma against Ricin
5.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schieltz, D.M.; McWilliams, L.G.; Kuklenyik, Z.; Prezioso, S.M.; Carter, A.J.; Williamson, Y.M.; McGrath, S.C.; Morse, S.A.; Barr, J.R. Quantification of Ricin, RCA and Comparison of Enzymatic Activity in 18 Ricinus communis Cultivars by Isotope Dilution Mass Spectrometry. Toxicon 2015, 95, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J. Ricin Poisoning: A Comprehensive Review. JAMA 2005, 294, 2342–2351. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Tsurugi, K. RNA N-Glycosidase Activity of Ricin A-Chain. Mechanism of Action of the Toxic Lectin Ricin on Eukaryotic Ribosomes. J. Biol. Chem. 1987, 262, 8128–8130. [Google Scholar] [CrossRef] [PubMed]
- Grela, P.; Szajwaj, M.; Horbowicz-Drozdzal, P.; Tchórzewski, M. How Ricin Damages the Ribosome. Toxins 2019, 11, 241. [Google Scholar] [CrossRef]
- Crompton, R.; Gall, D. Georgi Markov—Death in a Pellet. Med. Leg. J. 1980, 48, 51–62. [Google Scholar] [CrossRef]
- Henry, S. Man Charged after French Police Foil Paris Ricin Terror Plot. Available online: https://www.telegraph.co.uk/news/2018/05/18/french-police-foil-ricin-terror-plot-arrest-egyptian-brothers/ (accessed on 21 August 2024).
- Unknown Ricin Threat: Cologne Anti-Terror Police Search Flats. Available online: https://www.bbc.com/news/world-europe-44494010 (accessed on 21 August 2024).
- Sehgal, P.; Kumar, O.; Kameswararao, M.; Ravindran, J.; Khan, M.; Sharma, S.; Vijayaraghavan, R.; Prasad, G.B.K.S. Differential Toxicity Profile of Ricin Isoforms Correlates with Their Glycosylation Levels. Toxicology 2011, 282, 56–67. [Google Scholar] [CrossRef]
- Lin, T.T.S.; Li, S.S.L. Purification and Physicochemical Properties of Ricins and Agglutinins from Ricinus communis. Eur. J. Biochem. 1980, 105, 453–459. [Google Scholar] [CrossRef]
- Araki, T.; Funatsu, G. The Complete Amino Acid Sequence of the B-Chain of Ricin E Isolated from Small-Grain Castor Bean Seeds. Ricin E Is a Gene Recombination Product of Ricin D and Ricinus communis Agglutinin. Biochim. Biophys. Acta (BBA)—Protein Struct. Mol. Enzymol. 1987, 911, 191–200. [Google Scholar] [CrossRef]
- Mise, T.; Funatsu, G.; Ishiguro, M. Isolation and Characterization of Ricin E from Castor Beans. Agric. Biol. Chem. 1977, 41, 2041–2046. [Google Scholar] [CrossRef]
- Griffiths, G.D.; Rice, P.; Allenby, A.C.; Bailey, S.C.; Upshall, D.G. Inhalation Toxicology and Histopathology of Ricin and Abrin Toxins. Inhal. Toxicol. 1995, 7, 269–288. [Google Scholar] [CrossRef]
- Fredriksson, S.Å.; Hulst, A.G.; Artursson, E.; De Jong, A.L.; Nilsson, C.; Van Baar, B.L.M. Forensic Identification of Neat Ricin and of Ricin from Crude Castor Bean Extracts by Mass Spectrometry. Anal. Chem. 2005, 77, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Despeyroux, D.; Walker, N.; Pearce, M.; Fisher, M.; McDonnell, M.; Bailey, S.C.; Griffiths, G.D.; Watts, P. Characterization of Ricin Heterogeneity by Electrospray Mass Spectrometry, Capillary Electrophoresis, and Resonant Mirror. Anal. Biochem. 2000, 279, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Worbs, S.; Köhler, K.; Pauly, D.; Avondet, M.A.; Schaer, M.; Dorner, M.B.; Dorner, B.G. Ricinus communis Intoxications in Human and Veterinary Medicine-a Summary of Real Cases. Toxins 2011, 3, 1332–1372. [Google Scholar] [CrossRef] [PubMed]
- Angalakurthi, S.K.; Vance, D.J.; Rong, Y.; Nguyen, C.M.T.; Rudolph, M.J.; Volkin, D.; Russell Middaugh, C.; Weis, D.D.; Mantis, N.J. A Collection of Single-Domain Antibodies That Crowd Ricin Toxin’s Active Site. Antibodies 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Stechmann, B.; Bai, S.K.; Gobbo, E.; Lopez, R.; Merer, G.; Pinchard, S.; Panigai, L.; Tenza, D.; Raposo, G.; Beaumelle, B.; et al. Inhibition of Retrograde Transport Protects Mice from Lethal Ricin Challenge. Cell 2010, 141, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Vance, D.J.; Tremblay, J.M.; Rong, Y.; Angalakurthi, S.K.; Volkin, D.B.; Middaugh, C.R.; Weis, D.D.; Shoemaker, C.B.; Mantis, N.J. High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Non-Neutralizing Single-Domain on the Enzymatic and Binding Subunits of Ricin Toxin. Clin. Vaccine Immunol. 2017, 24, e00236-17. [Google Scholar] [CrossRef]
- Neal, L.M.; O’Hara, J.; Brey, R.N.; Mantis, N.J. A Monoclonal Immunoglobulin G Antibody Directed against an Immunodominant Linear Epitope on the Ricin A Chain Confers Systemic and Mucosal Immunity to Ricin. Infect. Immun. 2010, 78, 552–561. [Google Scholar] [CrossRef]
- Respaud, R.; Marchand, D.; Pelat, T.; Tchou-Wong, K.M.; Roy, C.J.; Parent, C.; Cabrera, M.; Guillemain, J.; Mac Loughlin, R.; Levacher, E.; et al. Development of a Drug Delivery System for Efficient Alveolar Delivery of a Neutralizing Monoclonal Antibody to Treat Pulmonary Intoxication to Ricin. J. Control. Release 2016, 234, 21–32. [Google Scholar] [CrossRef]
- Pelat, T.; Hust, M.; Hale, M.; Lefranc, M.P.; Dübel, S.; Thullier, P. Isolation of a Human-like Antibody Fragment (ScFv) That Neutralizes Ricin Biological Activity. BMC Biotechnol. 2009, 9, 60. [Google Scholar] [CrossRef]
- Tolman, L.E.; Yates, J.L.; Rong, Y.; Reynolds-Peterson, C.; Ehrbar, D.; Torres-Velez, F.J.; Mantis, N.J. Durable Immunity to Ricin Toxin Elicited by Intranasally Administered Monoclonal Antibody–Based Immune Complexes. Immunohorizons 2022, 6, 324–333. [Google Scholar] [CrossRef]
- Rong, Y.; Pauly, M.; Guthals, A.; Pham, H.; Ehrbar, D.; Zeitlin, L.; Mantis, N.J. A Humanized Monoclonal Antibody Cocktail to Prevent Pulmonary Ricin Intoxication. Toxins 2020, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Torres-Velez, F.J.; Ehrbar, D.; Doering, J.; Song, R.; Mantis, N.J. An Intranasally Administered Monoclonal Antibody Cocktail Abrogates Ricin Toxin-Induced Pulmonary Tissue Damage and Inflammation. Hum. Vaccines Immunother. 2020, 16, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Falach, R.; Sapoznikov, A.; Alcalay, R.; Aftalion, M.; Ehrlich, S.; Makovitzki, A.; Agami, A.; Mimran, A.; Rosner, A.; Sabo, T.; et al. Generation of Highly Efficient Equine-Derived Antibodies for Post-Exposure Treatment of Ricin Intoxications by Vaccination with Monomerized Ricin. Toxins 2018, 10, 466. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.C.; Yin, J.; Chau, D.; Cherwonogrodzky, J.W.; Hu, W.-G. Active Immunity Induced by Passive IgG Post-Exposure Protection against Ricin. Toxins 2014, 6, 380–393. [Google Scholar] [CrossRef]
- Orsini Delgado, M.L.; Avril, A.; Prigent, J.; Dano, J.; Rouaix, A.; Worbs, S.; Dorner, B.G.; Rougeaux, C.; Becher, F.; Fenaille, F.; et al. Ricin Antibodies’ Neutralizing Capacity against Different Ricin Isoforms and Cultivars. Toxins 2021, 13, 100. [Google Scholar] [CrossRef]
- Prigent, J.; Panigai, L.; Lamourette, P.; Sauvaire, D.; Devilliers, K.; Plaisance, M.; Volland, H.; Créminon, C.; Simon, S. Neutralising Antibodies against Ricin Toxin. PLoS ONE 2011, 6, e20166. [Google Scholar] [CrossRef]
- Sully, E.K.; Whaley, K.J.; Bohorova, N.; Bohorov, O.; Goodman, C.; Kim, D.H.; Pauly, M.H.; Velasco, J.; Hiatt, E.; Morton, J.; et al. Chimeric Plantibody Passively Protects Mice against Aerosolized Ricin Challenge. Clin. Vaccine Immunol. 2014, 21, 777–782. [Google Scholar] [CrossRef]
- Czajka, T.F.; Vance, D.J.; Davis, S.; Rudolph, M.J.; Mantis, N.J. Single-Domain Antibodies Neutralize Ricin Toxin Intracellularly by Blocking Access to Ribosomal P-Stalk Proteins. J. Biol. Chem. 2022, 298, 101742. [Google Scholar] [CrossRef]
- Vance, D.J.; Tremblay, J.M.; Mantis, N.J.; Shoemaker, C.B. Stepwise Engineering of Heterodimeric Single Domain Camelid VHH Antibodies That Passively Protect Mice from Ricin Toxin. J. Biol. Chem. 2013, 288, 36538–36547. [Google Scholar] [CrossRef]
- Herrera, C.; Klokk, T.I.; Cole, R.; Sandvig, K.; Mantis, N.J. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking. PLoS ONE 2016, 11, e0156893. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Avril, A. Medical Countermeasures against Ricin Intoxication. Toxins 2023, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Mize, R.R.; Marrero, L.; Corti, M.; Kirk, J.M.; Pincus, S.H. Antibody to Ricin A Chain Hinders Intracellular Routing of Toxin and Protects Cells Even after Toxin Has Been Internalized. PLoS ONE 2013, 8, e62417. [Google Scholar] [CrossRef] [PubMed]
- Yermakova, A.; Klokk, T.I.; O’Hara, J.M.; Cole, R.; Sandvig, K.; Mantis, N.J. Neutralizing Monoclonal Antibodies against Disparate Epitopes on Ricin Toxin’s Enzymatic Subunit Interfere with Intracellular Toxin Transport. Sci. Rep. 2016, 6, 22721. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.J.; Czajka, T.F.; Davis, S.A.; Thi Nguyen, C.M.; Li, X.-p.; Tumer, N.E.; Vance, D.J.; Mantis, N.J. Intracellular Neutralization of Ricin Toxin by Single-Domain Antibodies Targeting the Active Site. J. Mol. Biol. 2020, 432, 1109–1125. [Google Scholar] [CrossRef] [PubMed]
- Vance, D.J.; Rudolph, M.J.; Davis, S.A.; Mantis, N.J. Structural Basis of Antibody-Mediated Inhibition of Ricin Toxin Attachment to Host Cells. Biochemistry 2023, 62, 3181–3187. [Google Scholar] [CrossRef]
- Noy-Porat, T.; Alcalay, R.; Epstein, E.; Sabo, T.; Kronman, C.; Mazor, O. Extended Therapeutic Window for Post-Exposure Treatment of Ricin Intoxication Conferred by the Use of High-Affinity Antibodies. Toxicon 2017, 127, 100–105. [Google Scholar] [CrossRef]
- Noy-Porat, T.; Rosenfeld, R.; Ariel, N.; Epstein, E.; Alcalay, R.; Zvi, A.; Kronman, C.; Ordentlich, A.; Mazor, O. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized-Human Primates. Toxins 2016, 8, 64. [Google Scholar] [CrossRef]
- Roy, C.J.; Van Slyke, G.; Ehrbar, D.; Bornholdt, Z.A.; Brennan, M.B.; Campbell, L.; Chen, M.; Kim, D.; Mlakar, N.; Whaley, K.J.; et al. Passive Immunization with an Extended Half-Life Monoclonal Antibody Protects Rhesus Macaques against Aerosolized Ricin Toxin. NPJ Vaccines 2020, 5, 13. [Google Scholar] [CrossRef]
- Roy, C.J.; Ehrbar, D.J.; Bohorova, N.; Bohorov, O.; Kim, D.; Pauly, M.; Whaley, K.; Rong, Y.; Torres-Velez, F.J.; Vitetta, E.S.; et al. Rescue of Rhesus Macaques from the Lethality of Aerosolized Ricin Toxin. JCI Insight 2019, 4, e124771. [Google Scholar] [CrossRef]
- Rudolph, M.J.; Vance, D.J.; Cheung, J.; Franklin, M.C.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Herrera, C.; Shoemaker, C.B.; Mantis, N.J. Crystal Structures of Ricin Toxin’s Enzymatic Subunit (RTA) in Complex with Neutralizing and Non-Neutralizing Single-Chain Antibodies. J. Mol. Biol. 2014, 426, 3057–3068. [Google Scholar] [CrossRef]
- Rong, Y.; Van Slyke, G.; Vance, D.J.; Westfall, J.; Ehrbar, D.; Mantis, N.J. Spatial Location of Neutralizing and Non-Neutralizing B Cell Epitopes on Domain 1 of Ricin Toxin’s Binding Subunit. PLoS ONE 2017, 12, e0180999. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, S.; Xu, N.; Liu, W. Ricin Toxin and Its Neutralizing Antibodies: A Review. Toxicon 2022, 214, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Herrera, C.; Tremblay, J.M.; Shoemaker, C.B.; Mantis, N.J. Mechanisms of Ricin Toxin Neutralization Revealed through Engineered Homodimeric and Heterodimeric Camelid Antibodies. J. Biol. Chem. 2015, 290, 27880–27889. [Google Scholar] [CrossRef] [PubMed]
- Gal, Y.; Sapoznikov, A.; Falach, R.; Ehrlich, S.; Aftalion, M.; Sabo, T.; Kronman, C. Potent Antiedematous and Protective Effects of Ciprofloxacin in Pulmonary Ricinosis. Antimicrob. Agents Chemother. 2016, 60, 7153–7158. [Google Scholar] [CrossRef] [PubMed]
- Gal, Y.; Mazor, O.; Alcalay, R.; Seliger, N.; Aftalion, M.; Sapoznikov, A.; Falach, R.; Kronman, C.; Sabo, T. Antibody/Doxycycline Combined Therapy for Pulmonary Ricinosis: Attenuation of Inflammation Improves Survival of Ricin-Intoxicated Mice. Toxicol. Rep. 2014, 1, 496–504. [Google Scholar] [CrossRef]
- Lord, J.M.; Roberts, L.M.; Robertus, J.D. Ricin: Structure, Mode of Action, and Some Current Applications. FASEB J. 1994, 8, 201–208. [Google Scholar] [CrossRef]
- Worbs, S.; Skiba, M.; Söderström, M.; Rapinoja, M.L.; Zeleny, R.; Russmann, H.; Schimmel, H.; Vanninen, P.; Fredriksson, S.Å.; Dorner, B.G. Characterization of Ricin and R. communis Agglutinin Reference Materials. Toxins 2015, 7, 4906–4934. [Google Scholar] [CrossRef]
- Kohler, G.; Milstein, C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Randhawa, M.A. Calculation of LD50 Values from the Method of Miller and Tainter, 1944. J. Ayub Med. Coll. Abbottabad 2009, 21, 184–185. [Google Scholar]
- Lemley, P.V.; Wright, D.C. Mice Are Actively Immunized after Passive Monoclonal Antibody Prophylaxis and Ricin Toxin Challenge. Immunology 1992, 76, 511. [Google Scholar]
- Stoll, A.; Shenton, D.P.; Green, A.C.; Holley, J.L. Comparative Aspects of Ricin Toxicity by Inhalation. Toxins 2023, 15, 281. [Google Scholar] [CrossRef] [PubMed]
- Falach, R.; Sapoznikov, A.; Gal, Y.; Israeli, O.; Leitner, M.; Seliger, N.; Ehrlich, S.; Kronman, C.; Sabo, T. Quantitative Profiling of the In Vivo Enzymatic Activity of Ricin Reveals Disparate Depurination of Different Pulmonary Cell Types. Toxicol. Lett. 2016, 258, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Sapoznikov, A.; Falach, R.; Mazor, O.; Alcalay, R.; Gal, Y.; Seliger, N.; Sabo, T.; Kronman, C. Diverse Profiles of Ricin-Cell Interactions in the Lung Following Intranasal Exposure to Ricin. Toxins 2015, 7, 4817–4831. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, T.; Ohba, H.; Yamasaki, N.; Funatsu, G. Binding of Saccharides to Ricin e Isolated from Small Castor Beans. J. Biochem. 1989, 105, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Komatsu, N.; Muramatsu, T. Cell Lysis Induced by Ricin D and Ricin E in Various Cell Lines. Biosci. Biotechnol. Biochem. 1997, 61, 291–297. [Google Scholar] [CrossRef]
- Barbieri, L.; Battelli, M.G.; Stirpe, F. Ribosome-Inactivating Proteins from Plants. Biochim. Biophys. Acta (BBA)—Rev. Biomembr. 1993, 1154, 237–282. [Google Scholar] [CrossRef]
- Stirpe, F.; Sandvig, K.; Olsnes, S.; Pihl, A. Action of Viscumin, a Toxic Lectin from Mistletoe, on Cells in Culture. J. Biol. Chem. 1982, 257, 13271–13277. [Google Scholar] [CrossRef]
- Olsnes, S.; Sandvig, K.; Eiklid, K.; Pihl, A. Properties and Action Mechanism of the Toxic Lectin Modeccin: Interaction with Cell Lines Resistant to Modeccin, Abrin, and Ricin. J. Supramol. Struct. 1978, 9, 15–25. [Google Scholar] [CrossRef]
- Nicolson, G.L.; Blaustein, J. The Interaction of Ricinus communis Agglutinin with Normal and Tumor Cell Surfaces. Biochim. Biophys. Acta (BBA)—Biomembr. 1972, 266, 543–547. [Google Scholar] [CrossRef]
- Baenziger, J.U.; Fiete, D. Structural Determinants of Ricinus communis Agglutinin and Toxin Specificity for Oligosaccharides. J. Biol. Chem. 1979, 254, 9795–9799. [Google Scholar] [CrossRef]
- Simmons, B.M.; Stahl, P.D.; Russell, J.H. Mannose Receptor-Mediated Uptake of Ricin Toxin and Ricin A Chain by Macrophages. Multiple Intracellular Pathways for a Chain Translocation. J. Biol. Chem. 1986, 261, 7912–7920. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, S.; Berg, T.; Turpin, E.; Frenoy, J.P. Interactions of Ricin with Sinusoidal Endothelial Rat Liver Cells. Different Involvement of Two Distinct Carbohydrate-Specific Mechanisms in Surface Binding and Internalization. Biochem. J. 1991, 277, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Sandvig, K.; Grimmer, S.; Iversen, T.G.; Rodal, K.; Torgersen, M.L.; Nicoziani, P.; Van Deurs, B. Ricin Transport into Cells: Studies of Endocytosis and Intracellular Transport. Int. J. Med. Microbiol. 2000, 290, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Sowa-Rogozí Nska, N.; Sominka, H.; Nowakowska-Gołacka, J.; Sandvig, K.; Słomí Nska-Wojewódzka, M. Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins 2019, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, J.M.; Mantis, N.J. Neutralizing Monoclonal Antibodies against Ricin’s Enzymatic Subunit Interfere with Protein Disulfide Isomerase-Mediated Reduction of Ricin Holotoxin in Vitro. J. Immunol. Methods 2013, 395, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Czajka, T.F.; Vance, D.J.; Song, R.; Mantis, N.J. A Biparatopic Intrabody Renders Vero Cells Impervious to Ricin Intoxication. bioRxiv 2024. [Google Scholar] [CrossRef]
- Legler, P.M.; Compton, J.R.; Hale, M.L.; Anderson, G.P.; Olson, M.A.; Millard, C.B.; Goldman, E.R. Stability of Isolated Antibody-Antigen Complexes as a Predictive Tool for Selecting Toxin Neutralizing Antibodies. MAbs 2017, 9, 43–57. [Google Scholar] [CrossRef]
- Rudolph, M.J.; Poon, A.Y.; Kavaliauskiene, S.; Myrann, A.G.; Reynolds-Peterson, C.; Davis, S.A.; Sandvig, K.; Vance, D.J.; Mantis, N.J. Structural Analysis of Toxin-Neutralizing, Single-Domain Antibodies That Bridge Ricin’s A-B Subunit Interface. J. Mol. Biol. 2021, 433, 167086. [Google Scholar] [CrossRef]
- Rosenfeld, R.; Alcalay, R.; Mechaly, A.; Lapidoth, G.; Epstein, E.; Kronman, C.; Fleishman, S.J.; Mazor, O. Improved Antibody-Based Ricin Neutralization by Affinity Maturation Is Correlated with Slower off-Rate Values. Protein Eng. Des. Sel. 2017, 30, 611–617. [Google Scholar] [CrossRef]
- Yermakova, A.; Vance, D.J.; Mantis, N.J. Sub-Domains of Ricin’s B Subunit as Targets of Toxin Neutralizing and Non-Neutralizing Monoclonal Antibodies. PLoS ONE 2012, 7, e44317. [Google Scholar] [CrossRef]
- Wilhelmsen, C.L.; Pitt, M.L.M. Lesions of Acute Inhaled Lethal Ricin Intoxication in Rhesus Monkeys12. Vet. Pathol. 1996, 33, 257–367. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, G.D. Understanding Ricin from a Defensive Viewpoint. Toxins 2011, 3, 1373–1392. [Google Scholar] [CrossRef] [PubMed]
- Doebler, J.A.; Wiltshire, N.D.; Mayer, T.W.; Estep, J.E.; Moeller, R.B.; Traub, R.K.; Broomfield, C.A.; Calamaio, C.A.; Thompson, W.L.; Pitt, M.L. The Distribution of [125I]Ricin in Mice Following Aerosol Inhalation Exposure. Toxicology 1995, 98, 137–149. [Google Scholar] [CrossRef]
- Cook, D.L.; David, J.; Griffiths, G.D. Retrospective Identification of Ricin in Animal Tissues Following Administration by Pulmonary and Oral Routes. Toxicology 2006, 223, 61–70. [Google Scholar] [CrossRef]
- Power, C.A.; Bates, A. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies 2019, 8, 28. [Google Scholar] [CrossRef]
- Vogel, P.; Rivera, V.R.; Louise, M.; Pitt, M.; Poli, M.A. Comparison of the Pulmonary Distribution and Efficacy of Antibodies given to Mice by Intratracheal Instillation or Aerosol Inhalation. Lab. Anim. Sci. 1996, 46, 516–523. [Google Scholar]
- Piquet, P.; Saadi, J.; Fenaille, F.; Kalb, S.R.; Becher, F. Rapid Detection of Ricin at Trace Levels in Complex Matrices by Asialofetuin-Coated Beads and Bottom-up Proteomics Using High-Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2024, 416, 5145–5153. [Google Scholar] [CrossRef]
- Kalb, S.R.; Schieltz, D.M.; Becher, F.; Astot, C.; Fredriksson, S.Å.; Barr, J.R. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples. Toxins 2015, 7, 4881–4894. [Google Scholar] [CrossRef]
- Grassi, J.; Frobert, Y.; Lamourette, P.; Lagoutte, B. Screening of Monoclonal Antibodies Using Antigens Labeled with Acetylcholinesterase: Application to the Peripheral Proteins of Photosystem 1. Anal. Biochem. 1988, 168, 436–450. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
Generation | Antibody | Ricin Isoform | KD (M) × 10−11 # | kon (M−1s−1) × 105 # | koff (s−1) × 10−5 # |
---|---|---|---|---|---|
1st generation | RB34 † | Ricin D | 1.0 ± <0.1 | 5.61 ± <0.01 | 0.07 ± 0.01 |
Ricin E | 542.0 ± 44.3 | 17.00 ± 0.31 | 330.00 ± 1.36 | ||
43RCA-G1 † | Ricin D | 4.8 ± <0.1 | 4.23 ± <0.01 | 2.00 ± <0.01 | |
Ricin E | 9.6 ± <0.1 | 4.69 ± <0.01 | 4.52 ± <0.01 | ||
2nd generation | RicE4 | Ricin D | 6.7 ± <0.1 | 7.70 ± 0.01 | 5.18 ± <0.01 |
Ricin E | 13.0 ± <0.1 | 4.98 ± 0.01 | 6.45 ± <0.01 | ||
RicE5 | Ricin D | <0.1 | 4.72 ± <0.01 | <0.01 | |
Ricin E | <0.1 | 3.35 ± <0.01 | <0.01 | ||
RicE7 | Ricin D | 11.8 ± <0.1 | 13.67 ± 0.03 | 16.10 ± 0.04 | |
Ricin E | <0.1 | 8.22 ± 0.01 | <0.01 | ||
RicE8 | Ricin D | <0.1 ± <0.1 | 5.04 ± <0.01 | 0.03 ± <0.01 | |
Ricin E | <0.1 | 3.17 ± <0.01 | <0.01 |
IC50 (µg/mL) | |||
---|---|---|---|
Antibodies | Ricin D | Ricin E | Ricin D + E |
RB34 | 0.03 ± 0.06 ns | 16.80 ± 1.52 **** | 4.45 ± 0.53 **** |
43RCA-G1 | 2.38 ± 0.46 ** | 2.47 ± 0.40 **** | 2.90 ± 0.37 **** |
RicE5 | 0.14 ± 0.01 | 0.10 ± 0.01 | 0.12 ± 0.01 |
RicE8 | 0.46 ± 0.04 ns | 0.25 ± 0.02 ns | 0.39 ± 0.03 ns |
RicE5 + RicE8 | 0.10 ± 0.01 ns | 0.09 ± <0.01 ns | 0.09 ± 0.01 ns |
RicE5 + RB34 | 0.03 ± 0.02 ns | 0.18 ± 0.08 ns | 0.04 ± <0.01 ns |
RicE8 + 43RCA-G1 | 0.21 ± 0.02 ns | 0.19 ± 0.01 ns | 0.26 ± 0.05 ns |
RB34 + 43RCA-G1 | 0.02 ± <0.01 ns | 4.78 ± 1.64 **** | 0.32 ± 0.04 ns |
RicE5 + RicE8 + RB34 | 0.11 | 0.17 | 0.06 ± 0.01 ns |
RicE5 + RB34 + 43RCA-G1 | 0.02 ± <0.01 ns | 0.12 ± 0.01 ns | 0.03 ± <0.01 ns |
RicE8 + RB34 + 43RCA-G1 | 0.09 ± 0.04 ns | 0.31 ± 0.03 ns | 0.09 ± 0.03 ns |
CD50 (pg/mL) | |||
---|---|---|---|
Cell Type | Ricin D | Ricin E | Ricin D + E |
Vero | 24.9 ± 2.1 **** | 157.8 ± 15.0 **** | 47.3 ± 3.9 **** |
A549 | 82.4 ± 4.7 **** | 126.8 ± 11.5 **** | 79.0 ± 7.0 **** |
Jurkat | 5.6 ± 0.4 | 17.7 ± 1.6 | 9.7 ± 0.6 |
Dilution Factor for 50% of Viability | ||
---|---|---|
Treatments after Initial Exposure | Before Re-Exposure | After Re-Exposure |
RicE5 | 672 ± 85 | 2329 ± 256 * |
RicE5 + RicE8 | 2616 ± 378 | 2710 ± 172 ns |
RicE5 + RB34 | 1265 ± 49 | 2692 ± 337 ns |
RicE8 + 43RCA-G1 | 1907 ± 136 | 11,142 ± 1441 **** |
RicE5 + RB34 + 43RCA-G1 | 1790 ± 158 | 2784 ± 93 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lequesne, L.; Dano, J.; Rouaix, A.; Kropp, C.; Plaisance, M.; Gelhaye, S.; Lequesne, M.-L.; Piquet, P.; Avril, A.; Becher, F.; et al. A Monoclonal Antibody with a High Affinity for Ricin Isoforms D and E Provides Strong Protection against Ricin Poisoning. Toxins 2024, 16, 412. https://doi.org/10.3390/toxins16100412
Lequesne L, Dano J, Rouaix A, Kropp C, Plaisance M, Gelhaye S, Lequesne M-L, Piquet P, Avril A, Becher F, et al. A Monoclonal Antibody with a High Affinity for Ricin Isoforms D and E Provides Strong Protection against Ricin Poisoning. Toxins. 2024; 16(10):412. https://doi.org/10.3390/toxins16100412
Chicago/Turabian StyleLequesne, Loïs, Julie Dano, Audrey Rouaix, Camille Kropp, Marc Plaisance, Stéphanie Gelhaye, Marie-Lou Lequesne, Paloma Piquet, Arnaud Avril, François Becher, and et al. 2024. "A Monoclonal Antibody with a High Affinity for Ricin Isoforms D and E Provides Strong Protection against Ricin Poisoning" Toxins 16, no. 10: 412. https://doi.org/10.3390/toxins16100412
APA StyleLequesne, L., Dano, J., Rouaix, A., Kropp, C., Plaisance, M., Gelhaye, S., Lequesne, M.-L., Piquet, P., Avril, A., Becher, F., Orsini Delgado, M. L., & Simon, S. (2024). A Monoclonal Antibody with a High Affinity for Ricin Isoforms D and E Provides Strong Protection against Ricin Poisoning. Toxins, 16(10), 412. https://doi.org/10.3390/toxins16100412