5G Positioning: An Analysis of Early Datasets
<p>Trolley equipped with USRP for 5G NR downlink measurements (<b>left</b>); test center with the 6 indoor (white circles) and 5 outdoor (red circles) TRPs (<b>right</b>). Pictures by Fraunhofer IIS.</p> "> Figure 2
<p>Loading zone trajectories: Takes 01, 02, and 03.</p> "> Figure 3
<p>Driveway trajectories: Takes 04 and 05.</p> "> Figure 4
<p>Indoor trajectories: Takes 06, 07, and 08.</p> "> Figure 5
<p><span class="html-italic">ToA</span> observations (<b>left</b>); processing flux diagram (<b>right</b>).</p> "> Figure 6
<p>Take 01. SNR (dB) values plotted against time for each base station.</p> "> Figure 7
<p>Take 01, base station 8: SNR along the trajectory.</p> "> Figure 8
<p>Take 01: mean SNR for each distance interval.</p> "> Figure 9
<p>Take 01, reference station 8: least squares results.</p> "> Figure 10
<p>Take 01, reference station 8: least squares results excluding station 7.</p> "> Figure 11
<p>Take 02, reference station 8: least squares results excluding station 7.</p> "> Figure 12
<p>Take 03, reference station 8: least squares excluding station 7. Note: for a few epochs, the total station did not record measurements; these epochs are excluded from any statistical analysis.</p> "> Figure 13
<p>Take 06, reference station 1: least squares results.</p> "> Figure 14
<p>Take 07, reference station 1: least squares results.</p> "> Figure 15
<p>Take 08, reference station 1: least squares results.</p> "> Figure 16
<p>Take 04, reference station 4: least squares results.</p> "> Figure 17
<p>Take 05, reference station 4: least squares results.</p> "> Figure 18
<p>Pie charts representing the error magnitudes in Takes 04 and 05.</p> ">
Abstract
:1. Introduction
2. The GINTO5G Experiment
2.1. 5G Testbed
2.2. Experimental Campaign
2.3. Execution
2.4. Data Recording
- clock jitter;
- radio channel effects (e.g., multipath);
- the accuracy of the reference measurements of the distances between antennas.
3. Methods
- 1.
- Compute the TDoA;
- 2.
- Investigate possible strategies for the choice of the reference station in the TDoA (Section 3.1);
- 3.
- Estimate the positions using the least squares method in single epochs (Section 3.2);
- 4.
- Analyze the results and the statistics of the estimated trajectories with respect to the ground truth (Section 4).
3.1. TDoA Analysis
- use one BS as reference for all the epochs;
- use the pivot method, e.g., following a scheme BS1–BS2, BS2–BS3, and so on, for each epoch;
- choose as reference station for each epoch the station with the best SNR: in this case, the configuration can change between epochs.
3.2. Least Squares Algorithm
4. Results
4.1. SNR Analysis
- one reference station for the whole trajectory (this choice is repeated for each one station);
- the pivot method, with the schema: BS7–BS8, BS8–BS9, BS9–BS10, BS10–BS11;
- at each epoch the reference station is the station with the best SNR.
4.2. Least Squares Solution
4.2.1. Loading Zone Trajectories: Takes 01, 02, and 03
4.2.2. Indoor Trajectories: Takes 06, 07, and 08
4.2.3. Driveway Trajectories: Takes 04 and 05
5. Conclusions
- to implement algorithms for positioning using 5G observations that were applied to 5G data from the GINTO5G experiment;
- to experimentally assess the accuracy of the positioning in an environment where the deployment of the base stations was carefully controlled and optimized;
- to conduct experimental research on techniques aimed at identifying and reducing measurement errors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNSS | Global navigation satellite system |
ToA | Time of arrival |
TDoA | Time difference of arrival |
LOS | Line of sight |
NLOS | Non-line of sight |
BS | 5G base station |
UE | User equipment |
SNR | Signal to noise ratio |
SRS | Sounding reference signal |
SSS | Secondary synchronization signal |
OFDM | Orthogonal frequency-division multiplexing |
References
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Teunissen, P.J.; Montenbruck, O. (Eds.) Springer Handbook of Global Navigation Satellite Systems; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kanhere, O.; Rappaport, T.S. Position Location for Futuristic Cellular Communications—5G and Beyond. IEEE Commun. Mag. 2021, 59, 70–75. [Google Scholar] [CrossRef]
- Hammarberg, P.; Vinogradova, J.; Fodor, G.; Shreevastav, R.; Dwivedi, S.; Gunnarsson, F. Architecture, Protocols, and Algorithms for Location-Aware Services in Beyond 5G Networks. IEEE Commun. Stand. Mag. 2022, 6, 88–95. [Google Scholar] [CrossRef]
- Cardoso, K.; Both, C.; Prade, L.; Macedo, C.; Lopes, V.H. A softwarized perspective of the 5G networks. arXiv 2020, arXiv:2006.10409. [Google Scholar]
- Del Peral-Rosado, J.; Saloranta, J.; Destino, G.; López-Salcedo, J.; Seco-Granados, G. Methodology for Simulating 5G and GNSS High-Accuracy Positioning. Sensors 2018, 18, 3220. [Google Scholar] [CrossRef] [PubMed]
- Del Peral-Rosado, J.A.; Bartlett, D.; Grec, F.; Ries, L.; Prieto-Cerdeira, R.; Lopez-Salcedo, J.A.; Seco-Granados, G.; Renaudin, O.; Gentner, C.; Raulefs, R.; et al. Physical-Layer Abstraction for Hybrid GNSS and 5G Positioning Evaluations. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Mata, F.; Grec, F.; Azaola, M.; Blázquez, F.; Fernández, A.; Dominguez, E.; Cueto-Felgueroso, G.; Seco-Granados, G.; Del Peral-Rosado, J.; Staudinger, E.; et al. Preliminary Field Trials and Simulations Results on Performance of Hybrid Positioning Based on GNSS and 5G Signals. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), Online, 21–25 September 2020; pp. 387–401. [Google Scholar] [CrossRef]
- Alghisi, M.; Biagi, L. Positioning with GNSS and 5G: Analysis of Geometric Accuracy in Urban Scenarios. Sensors 2023, 23, 2181. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.S.H.M.W.; Radzi, N.A.M.; Samidi, F.S.; Ismail, A.; Abdullah, F.; Jamaludin, M.Z.; Zakaria, M.N. 5G Technology: Towards Dynamic Spectrum Sharing Using Cognitive Radio Networks. IEEE Access 2020, 8, 14460–14488. [Google Scholar] [CrossRef]
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Dwivedi, S.; Shreevastav, R.; Munier, F.; Nygren, J.; Siomina, I.; Lyazidi, Y.; Shrestha, D.; Lindmark, G.; Ernstrom, P.; Stare, E.; et al. Positioning in 5G Networks. IEEE Commun. Mag. 2021, 59, 38–44. [Google Scholar] [CrossRef]
- Lin, X.; Bergman, J.; Gunnarsson, F.; Liberg, O.; Razavi, S.M.; Razaghi, H.S.; Rydn, H.; Sui, Y. Positioning for the Internet of Things: A 3GPP Perspective. IEEE Commun. Mag. 2017, 55, 179–185. [Google Scholar] [CrossRef]
- Fischer, S. 5G NR Positioning; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Mogyorósi, F.; Revisnyei, P.; Pašić, A.; Papp, Z.; Törös, I.; Varga, P.; Pašić, A. Positioning in 5G and 6G Networks—A Survey. Sensors 2022, 22, 4757. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Sharma, K. 5th generation millimeter wave wireless communication propagation losses dataset for indian metro cities based on corresponding weather conditions. Data Brief 2019, 23, 103564. [Google Scholar] [CrossRef] [PubMed]
- Wymeersch, H.; Seco-Granados, G.; Destino, G.; Dardari, D.; Tufvesson, F. 5G mmWave Positioning for Vehicular Networks. IEEE Wirel. Commun. 2017, 24, 80–86. [Google Scholar] [CrossRef]
- Jeon, J. NR Wide Bandwidth Operations. IEEE Commun. Mag. 2018, 56, 42–46. [Google Scholar] [CrossRef]
- Dabove, P.; Di Pietra, V.; Piras, M.; Jabbar, A.A.; Kazim, S.A. Indoor positioning using Ultra-wide band (UWB) technologies: Positioning accuracies and sensors’ performances. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 175–184. [Google Scholar] [CrossRef]
- Ali, E.; Ismail, M.; Nordin, R.; Abdulah, N.F. Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Front. Inf. Technol. Electron. Eng. 2017, 18, 753–772. [Google Scholar] [CrossRef]
- Kailath, T. Lectures on Wiener and Kalman Filtering; Springer: Wien, Austria, 1981. [Google Scholar]
- Jekeli, C. Inertial Navigation System with Geodetic Application; Walter de Gruyter: Berlin, Germany, 2001. [Google Scholar]
- Koch, K.R. Parameter Estimation and Hypothesis Testing in Linear Models; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- 3GPP TS 38.211; Technical Specification Group Radio Access Network. NR. Physical Channels and Modulation (Release 17). ETSI: Sophia Antipolis Cedex, France, 2023.
- Sun, B.; Tan, B.; Wang, W.; Lohan, E.S. A comparative study of 3D UE positioning in 5G new radio with a single station. Sensors 2021, 21, 1178. [Google Scholar] [CrossRef] [PubMed]
- Pileggi, C. 5G Positioning: Preliminary Analysis of Early Data Sets. Master’s Thesis, Politecnico di Milano, Milano, Italy, 2022. [Google Scholar]
- ESA. Performance Assessment Data Processing File, Document Internal to EGEP 107 Project; Technical Report; ESA/ESTEC: Noordwijk, The Netherlands, 2020. [Google Scholar]
- ESA. Experimental Platform Design, Document Internal to EGEP 107 Project; Technical Report; ESA/ESTEC: Noordwijk, The Netherlands, 2020. [Google Scholar]
- ESA. Experimental Campaign Planning, Document Internal to EGEP 107 Project; Technical Report; ESA/ESTEC: Noordwijk, The Netherlands, 2020. [Google Scholar]
- ESA. High Accuracy Execution Test Results, Document Internal to EGEP 107 Project; Technical Report; ESA/ESTEC: Noordwijk, The Netherlands, 2020. [Google Scholar]
- ESA. Performance Assessment—High Accuracy, Document Internal to EGEP 107 Project; Technical Report; ESA/ESTEC: Noordwijk, The Netherlands, 2020. [Google Scholar]
- Zou, J.; Xu, C. High Precision Timing Based on Parabola Curve Fitting in Narrowband System. In Proceedings of the 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Guilin, China, 17–19 October 2019; pp. 288–291. [Google Scholar]
- Zhang, Z.; Kang, S. Time of arrival estimation based on clustering for positioning in OFDM system. IET Commun. 2020, 14, 2584–2591. [Google Scholar] [CrossRef]
- Wells, D.; Lindlohr, W.; Schaffrin, B.; Grafarend, E. GPS Design: Undifferenced Carrier Beat Phase Observations and the Fundamental Differencing Theorem; Technical report 116; University of New Brunswick: Fredericton, NB, Canada, 1987. [Google Scholar]
Parameter | Value |
---|---|
63 | |
0 | |
272 |
BS 7 | BS 8 | BS 9 | BS 10 | BS 11 | |
---|---|---|---|---|---|
Mean (dB) | 31 | 31 | 30 | 30 | 30 |
St.dev. (dB) | 2 | 1 | 1 | 2 | 2 |
Max. (dB) | 36 | 34 | 35 | 35 | 34 |
Min. (dB) | 22 | 25 | 24 | 19 | 23 |
Ref. [7] | Ref. [8] | Ref. [9] | Ref. [10] | Ref. [11] | Pivot | Best SNR | |
---|---|---|---|---|---|---|---|
Cum. err. (m) | 0.8 | 0.6 | 0.8 | 1.0 | 0.8 | 0.9 | 0.8 |
Mean (m) | 0.1 | −0.1 | 0.0 | 0.5 | −0.2 | 0.0 | 0.2 |
St. dev. (m) | 0.6 | 0.4 | 0.5 | 0.6 | 0.6 | 0.7 | 0.7 |
2D Error | Ref. [8] | Ref. [9] | Ref. [10] | Ref. [11] |
---|---|---|---|---|
Mean (m) | 0.6 | 0.6 | 0.6 | 0.6 |
St. dev. (m) | 0.4 | 0.4 | 0.4 | 0.4 |
Max. (m) | 7.2 | 6.9 | 7.3 | 7.4 |
2D Error | Mean (m) | St.dev. (m) | Max. (m) | >10 m (n) | >5 m (n) |
---|---|---|---|---|---|
Take 02 with st. 7 | 0.9 | 1.0 | 29 | 10 | 20 |
Take 02 excl. st. 7 | 0.8 | 0.9 | 27 | 9 | 15 |
Take 03 with st. 7 | 0.9 | 0.7 | 5 | 2 | 2 |
Take 03 excl. st. 7 | 0.9 | 0.6 | 3 | 2 | 2 |
2D Error | Mean | St. dev. | Max. |
---|---|---|---|
Take 06 (m) | 0.7 | 0.8 | 4.9 |
Take 07 (m) | 1.9 | 1.9 | 19 |
Take 08 (m) | 0.6 | 0.4 | 1.6 |
Residuals | 1–2 | 1–3 | 1–4 | 1–5 | 1–6 | |
---|---|---|---|---|---|---|
Take 06 | Mean (m) | −0.1 | 0.0 | −0.1 | −0.1 | −0.1 |
St. dev. (m) | 1.6 | 0.2 | 0.6 | 0.9 | 0.6 | |
Max. (m) | 39 | 3 | 14 | 21 | 17 | |
Take 07 | Mean (m) | 0.04 | −0.2 | 0.1 | −0.02 | −0.1 |
St. dev. (m) | 1.5 | 1.3 | 0.9 | 0.9 | 0.8 | |
Max. (m) | 37 | 25 | 15 | 23 | 15 | |
Take 08 | Mean (m) | 0.0 | 0.1 | 0.1 | 0.0 | 0.2 |
St. dev. (m) | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | |
Max. (m) | 0.5 | 0.6 | 1.0 | 0.5 | 0.7 |
Mean | 0.6 m |
St. dev. | 0.4 m |
Max. | 1.8 m |
Residuals | 1–3 | 1–4 | 1–5 | 1–6 |
---|---|---|---|---|
Mean (m) | 0.0 | 0.0 | 0.0 | 0.0 |
St. dev. (m) | 0.1 | 0.1 | 0.1 | 0.2 |
Max. (m) | 0.7 | 0.6 | 0.6 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pileggi, C.; Grec, F.C.; Biagi, L. 5G Positioning: An Analysis of Early Datasets. Sensors 2023, 23, 9222. https://doi.org/10.3390/s23229222
Pileggi C, Grec FC, Biagi L. 5G Positioning: An Analysis of Early Datasets. Sensors. 2023; 23(22):9222. https://doi.org/10.3390/s23229222
Chicago/Turabian StylePileggi, Chiara, Florin Catalin Grec, and Ludovico Biagi. 2023. "5G Positioning: An Analysis of Early Datasets" Sensors 23, no. 22: 9222. https://doi.org/10.3390/s23229222
APA StylePileggi, C., Grec, F. C., & Biagi, L. (2023). 5G Positioning: An Analysis of Early Datasets. Sensors, 23(22), 9222. https://doi.org/10.3390/s23229222