Modeling the Visual Landscape: A Review on Approaches, Methods and Techniques
<p>Illustration of the separate functions of the dorsal and ventral pathways/streams during the observation of a landscape scene: the dorsal stream mainly engages with the entirety of salient areas all over the visual field (hollow circles with white, dashed outlines), and the ventral stream emphasizes the central part of the visual field (red circle with white outline in the center of the figure). The figure has been created according to [<a href="#B19-sensors-23-08135" class="html-bibr">19</a>].</p> "> Figure 2
<p>Graphical illustration of the two meaningful perspectives/visualizations under which a landscape can be conceived: (<b>a</b>) Egocentric perspective; (<b>b</b>) Exocentric perspective. Adopted from [<a href="#B21-sensors-23-08135" class="html-bibr">21</a>].</p> "> Figure 3
<p>Abstracted model of interactions taking place between the landscape context and the situational context towards the emergence of landscape aesthetic experience. The figure has been created according to [<a href="#B128-sensors-23-08135" class="html-bibr">128</a>].</p> "> Figure 4
<p>Examples of large landscape/geographic units included in the LANMAP classification methodology: the landscape types (e.g., Hills LS al, Lowland OS ha, etc.) that are cartographically represented occur due to the combination (overlaying) of suitable input geospatial data (e.g., altitude, land use, etc.). Figure adopted from [<a href="#B95-sensors-23-08135" class="html-bibr">95</a>].</p> "> Figure 5
<p>Examples of landscape types represented as visual scenes (photographs or photographic simulations) occurring in everyday life: (<b>a</b>) Forest [<a href="#B55-sensors-23-08135" class="html-bibr">55</a>]; (<b>b</b>) Mountainous [<a href="#B44-sensors-23-08135" class="html-bibr">44</a>]; (<b>c</b>) Urban [<a href="#B26-sensors-23-08135" class="html-bibr">26</a>]; (<b>d</b>) Industrial [<a href="#B129-sensors-23-08135" class="html-bibr">129</a>], (<b>e</b>) Mining [<a href="#B29-sensors-23-08135" class="html-bibr">29</a>]; (<b>f</b>) Rural/agricultural [<a href="#B130-sensors-23-08135" class="html-bibr">130</a>].</p> "> Figure 6
<p>Overview of the developed methodology utilizing a combination of eye-tracking simulation, photographic content analysis, and geospatial analysis to extract the predictors (independent variables) in order to explain people’s preferences of alpine landscapes (dependent variable) being collected by means of surveys based on panoramic landscape photographs. The figure has been created according to [<a href="#B100-sensors-23-08135" class="html-bibr">100</a>].</p> ">
Abstract
:1. Introduction
1.1. General Background
1.2. Identification and Outline of the Research
2. The Two Modalities of Approaching the Visual Landscape: Concepts, Methods and Metrics
- Landscape perception is by and large equivalent to the occurring behavioral patterns of visual activity and/or brain activity, while visually experiencing a landscape (scene);
- Landscape evaluation refers mainly to the people’s judgements or appraisal of landscape, meaning landscape (visual quality) preferences and ratings, while visually experiencing a landscape (scene).
2.1. Methods and Techniques for Modeling Visual Landscape Perception
2.1.1. Eye Tracking and Eye Movement Analysis
2.1.2. fMRI and EEG
2.2. Methods and Techniques for Modeling Visual Landscape Evaluation/Assessment
3. Descriptive and Normative Approaches in the Framework of the Two ‘Divergent’ Perspectives for Conceiving/Managing Landscape
3.1. The Two ‘Divergent’ Perspectives for Landscape: Egocentric vs. Exocentric
- The one that “apprehends the individual or the human as the starting point”; this approach refers to the philosophical attitude that places the self or the humans at the center of the world; according to this approach “what each individual directly perceives is not a neutral space, but rather an imaginary sphere of personal signs and signals”;
- The other that “considers space as an object of observation”; this perspective pertains to the philosophical reflection of the Cartesian extension whereby the adopted attitude is that of “an observer that is voluntarily detached from the space-object”.
3.2. Descriptive Approach: Classification/Characterization Process in Landscape Character Assessment
3.3. Normative Approach: Evaluation Process in Landscape Character Assessment
4. Discussion
4.1. Summarizing the Dualities of Landscape: A Critical Examination
4.2. Bridging the Gap between the Two Dualities
4.2.1. How to Integrate the Exocentric with the Egocentric Perspectives
4.2.2. How to Integrate Descriptive with Normative and Perception with Evaluation (Modalities)
4.3. Concluding Remarks and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orians, G.H. Habitat Selection: General Theory and Applications to Human Behavior. In The Evolution of Human Social Behavior; Elsevier: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Appleton, J. Prospects and Refuges Revisited. In Environmental Aesthetics: Theory, Research, and Application; Nasar, J.L.E., Ed.; Cambridge University Press: Cambridge, UK, 1988; pp. 27–44. [Google Scholar]
- Appleton, J. The Experience of Landscape; Wiley: Chichester, UK, 1996. [Google Scholar]
- Gibson, J.J. The Ecological Approach to Visual Perception; Hardcover; Houghton, Mifflin and Company: Boston, MA, USA, 1979; ISBN 0-39527-049-9. [Google Scholar]
- Kaplan, S.; Kaplan, R. Cognition and Environment: Functioning in an Uncertain World; Praeger: New York, NY, USA, 1982. [Google Scholar]
- Schwab, I.R. The Evolution of Eyes: Major Steps. the Keeler Lecture 2017: Centenary of Keeler Ltd. Eye 2018, 32, 302–313. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- O’Neill, R.V.O.; Krumme, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; Deangelist, D.L. Indices of Landscape Pattern. Landsc. Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- Ware, C. Information Visualization: Perception for Design; Morgan Kaufmann: Burlington, MA, USA, 2019. [Google Scholar]
- Lothian, A. Landscape and the Philosophy of Aesthetics: Is Landscape Quality Inherent in the Landscape or in the Eye of the Beholder? Landsc. Urban Plan. 1999, 44, 177–198. [Google Scholar] [CrossRef]
- USDA Forest Service. National Forest Landscape Management, Volume 1: Agriculture Handbook No 434; U.S. Government Printing Office: Washington, DC, USA, 1973.
- Bell, S. Elements of Visual Design in the Landscape, 2nd ed.; Spon Press: London, UK, 2004. [Google Scholar]
- Guo, X.; Qian, Y.; Li, L.; Asano, A. Assessment Model for Perceived Visual Complexity of Painting Images. Knowl.-Based Syst. 2018, 159, 110–119. [Google Scholar] [CrossRef]
- Kingdom, F.A.A.; Mullen, K.T. Separating Colour and Luminance Information in the Visual System. Spat. Vis. 1995, 9, 191–219. [Google Scholar] [CrossRef] [PubMed]
- Sabesan, R.; Schmidt, B.P.; Tuten, W.S.; Roorda, A. The Elementary Representation of Spatial and Color Vision in the Human Retina. Sci. Adv. 2016, 2, e1600797. [Google Scholar] [CrossRef] [PubMed]
- Ungerleider, L.G.; Mishkin, M. Two Cortical Visual Systems. In Analysis of Visual Behavior; Ingle, D.J., Goodale, M.A., Mansfield, R.J.W., Eds.; MIT Press: Cambridge, MA, USA, 1982; pp. 549–586. [Google Scholar]
- Ungerleider, L.G.; Pessoa, L. {W}hat and Where Pathways. Scholarpedia 2008, 3, 5342. [Google Scholar] [CrossRef]
- Goodale, M.A.; Milner, A.D. Separate Visual Pathways for Perception and Action. Trends Neurosci. 1992, 15, 20–25. [Google Scholar] [CrossRef]
- Sheth, B.R.; Young, R. Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information. Front. Integr. Neurosci. 2016, 10, 37. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Tappeiner, U. Landscape and Urban Planning Predicting Scenic Beauty of Mountain Regions. Landsc. Urban Plan. 2013, 111, 1–12. [Google Scholar] [CrossRef]
- Misthos, L.-M.; Menegaki, M. Identifying Vistas of Increased Visual Impact in Mining Landscapes. In Proceedings of the 6th International Conference on Computer Applications in the Minerals Industries (CAMI 2016), Istanbul, Turkey, 5–7 October 2016. [Google Scholar]
- Kent, M.; Schiavon, S. Evaluation of the Effect of Landscape Distance Seen in Window Views on Visual Satisfaction. Build. Environ. 2020, 183, 107160. [Google Scholar] [CrossRef]
- Misthos, L.-M. Development of a Geospatial, Multiparametric Model for Assessing Landscape Impacts from Mining; National Technical University of Athens: Athens, Greece, 2022. [Google Scholar]
- Berto, R.; Massaccesi, S.; Pasini, M. Do Eye Movements Measured across High and Low Fascination Photographs Differ? Addressing Kaplan’s Fascination Hypothesis. J. Environ. Psychol. 2008, 28, 185–191. [Google Scholar] [CrossRef]
- Dupont, L.; Van Eetvelde, V. The Use of Eye-Tracking in Landscape Perception Research. In Proceedings of the ETRA’14: Proceedings of the Symposium on Eye Tracking Research and Applications, Safety Harbor, FL, USA, 26–28 March 2014; pp. 387–388. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, E.J. Differences of Restorative Effects While Viewing Urban Landscapes and Green Landscapes. Sustainability 2019, 11, 2129. [Google Scholar] [CrossRef]
- Guo, S.; Sun, W.; Chen, W.; Zhang, J.; Liu, P. Impact of Artificial Elements on Mountain Landscape Perception: An Eye-Tracking Study. Land 2021, 10, 1102. [Google Scholar] [CrossRef]
- Li, Z.; Sun, X.; Zhao, S.; Zuo, H. Integrating Eye-Movement Analysis and the Semantic Differential Method to Analyze the Visual Effect of a Traditional Commercial Block in Hefei, China. Front. Archit. Res. 2021, 10, 317–331. [Google Scholar] [CrossRef]
- Misthos, L.; Pavlidis, A.; Karabassakis, E.; Menegaki, M.; Krassanakis, V.; Nakos, B. Exploring the Visual Impact from Open Pit Mines Applying Eye Movement Analyses on Mining Landscape Photographs. Int. J. Min. Reclam. Environ. 2020, 34, 609–624. [Google Scholar] [CrossRef]
- Misthos, L.-M.; Pavlidis, A.; Menegaki, M.; Krassanakis, V. Exploring the Perception of Mining Landscapes Using Eye Movement Analysis. In Proceedings of the 3rd International Workshop on Eye Tracking for Spatial Research, Zurich, Switzerland, 14 January 2018; Kiefer, P., Giannopoulos, I., Göbel, F., Raubal, M., Duchowski, A.T., Eds.; ETH Zurich: Zurich, Switzerland, 2018. [Google Scholar]
- Huang, A.S.; Lin, Y. The Effect of Landscape Colour, Complexity and Preference on Viewing Behaviour. Landsc. Res. 2020, 45, 214–227. [Google Scholar] [CrossRef]
- Misthos, L.-M.; Menegaki, M. Novel Techniques for Anticipating the Focus of Visual Attention across Different Mining Landscapes. Mater. Proc. 2021, 20, 5020. [Google Scholar] [CrossRef]
- Nordh, H.; Hagerhall, C.M.; Holmqvist, K. Exploring View Pattern and Analysing Pupil Size as a Measure of Restorative Qualities in Park Photos. In Proceedings of the II International Conference on Landscape and Urban Horticulture 881, Bologna, Italy, 25 November 2009; pp. 767–772. [Google Scholar]
- Ren, X. Consensus in Factors Affecting Landscape Preference: A Case Study Based on a Cross-Cultural Comparison. J. Environ. Manag. 2019, 252, 109622. [Google Scholar] [CrossRef]
- Pihel, J.; Ode Sang, Å.; Hägerhäll, C.; Nyström, M.; Sandström, E. Assessments and Eye Movements Compared between Photographs and Visualizations of Logged Forest Vistas—For What Kind of Assessments Are Visualisations a Good Representation of Photographs? In Peer Reviewed Proceedings of Digital Landscape Architecture 2014 at ETH Zurich; Herbert Wichmann Verlag/VDE Verlag GMBH: Berlin, Germany; Offenbach, Germany, 2014; pp. 344–351. [Google Scholar]
- Pihel, J.; Ode, Å.; Hagerhall, C.; Nyström, M. Forest Policy and Economics Expert and Novice Group Differences in Eye Movements When Assessing Biodiversity of Harvested Forests. For. Policy Econ. 2015, 56, 20–26. [Google Scholar] [CrossRef]
- Nordh, H.; Hagerhall, C.M.; Holmqvist, K.; Nordh, H.; Hagerhall, C.M.; Tracking, K.H.; Nordh, H.; Hagerhall, C.M. Tracking Restorative Components: Patterns in Eye Movements as a Consequence of a Restorative Rating Task Tracking Restorative Components: Patterns in Eye Movements as a Consequence of a Restorative Rating Task. Landsc. Res. 2013, 6397, 101–116. [Google Scholar] [CrossRef]
- Dupont, L.; Antrop, M.; Van Eetvelde, V. Does Landscape Related Expertise Influence the Visual Perception of Landscape Photographs? Implications for Participatory Landscape Planning and Management. Landsc. Urban Plan. 2015, 141, 68–77. [Google Scholar] [CrossRef]
- Ren, X.; Kang, J. Interactions between Landscape Elements and Tranquility Evaluation Based on Eye Tracking Experiments. J. Acoust. Soc. Am. 2015, 138, 3019–3022. [Google Scholar] [CrossRef] [PubMed]
- Dupont, L.; Ooms, K.; Antrop, M.; Van Eetvelde, V. Comparing Saliency Maps and Eye-Tracking Focus Maps: The Potential Use in Visual Impact Assessment Based on Landscape Photographs. Landsc. Urban Plan. 2016, 148, 17–26. [Google Scholar] [CrossRef]
- Devillez, H.; Guérin-Dugué, A.; Guyader, N. How a Distractor Influences Fixations during the Exploration of Natural Scenes. J. Eye Mov. Res. 2017, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dupont, L.; Ooms, K.; Duchowski, A.T.; Antrop, M.; Van Eetvelde, V. Investigating the Visual Exploration of the Rural-Urban Gradient Using Eye-Tracking. Spat. Cogn. Comput. 2017, 17, 65–88. [Google Scholar] [CrossRef]
- Zhang, W.; Lai, S. Neural Correlates of Appreciating Natural Landscape and Landscape Garden: Evidence from an FMRI Study. Brain Behav. 2019, 9, e01335. [Google Scholar] [CrossRef]
- Tang, I.; Tsai, Y.; Lin, Y.; Chen, J.; Hsieh, C.; Hung, S.; Sullivan, W.C.; Tang, H.; Chang, C. Landscape and Urban Planning Using Functional Magnetic Resonance Imaging (FMRI) to Analyze Brain Region Activity When Viewing Landscapes. Landsc. Urban Plan. 2017, 162, 137–144. [Google Scholar] [CrossRef]
- Seiyama, A.; Yamada, K.; Osaki, K.; Nakai, R.; Matsumoto, J.; Yoshimura, A. IMedPub Journals Neural Bases on Cognitive Aspect of Landscape Evaluation: A Study Using Functional Magnetic Resonance Imaging. J. Neurol. Neurosci. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Li, J.; Luo, G.; Li, T.; Chatterjee, A.; Zhang, W.; He, X. The Neural Mechanism of Aesthetic Judgments of Dynamic Landscapes: An FMRI Study. Sci. Rep. 2020, 10, 20774. [Google Scholar] [CrossRef] [PubMed]
- Isik, A.I.; Vessel, E.A. From Visual Perception to Aesthetic Appeal: Brain Responses to Aesthetically Appealing Natural Landscape Movies. Front. Hum. Neurosci. 2021, 15, 414. [Google Scholar] [CrossRef] [PubMed]
- Roe, J.J.; Aspinall, P.A.; Coyne, R. Engaging the Brain: The Impact of Natural versus Urban Scenes Using Novel EEG Methods in an Experimental Setting. Environ. Sci. 2013, 1, 93–104. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Xu, M. Landscape Perception Identification and Classification Based on Electroencephalogram (EEG) Features. Int. J. Environ. Res. Public Health 2022, 19, 629. [Google Scholar] [CrossRef]
- Kim, M.; Cheon, S.; Kang, Y. Use of Electroencephalography (EEG) for the Analysis of Emotional Perception and Fear to Nightscapes. Preprints 2018, 11, 233. [Google Scholar] [CrossRef]
- Hwang, J.-W.; Hong, C.-U.; Chong, W.-S. SD and EEG Evaluation of the Visual Cognition to the Natural and Urban Landscape. Korean Environ. Sci. Soc. 2006, 15, 305–310. [Google Scholar]
- Wu, J.; Zhong, Y.; Wang, Y.; Gong, C. Investigating the Relation between Visitor Attention and Visual Quality of Forest Landscape: A Mobile EEG Study. Forests 2022, 13, 1668. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Xu, M. The Function of Color and Structure Based on EEG Features in Landscape Recognition. Int. J. Environ. Res. Public Health 2021, 18, 4866. [Google Scholar] [CrossRef]
- Hammitv, W.E.; Pattersonb, M.E.; Noe, F.P. Identifying and Predicting Visual Preference of Southern Appalachian Forest Recreation Vistas. Landsc. Urban Plan. 1994, 29, 171–183. [Google Scholar] [CrossRef]
- López-martínez, F. Visual Landscape Preferences in Mediterranean Areas and Their Socio-Demographic Influences. Ecol. Eng. 2017, 104, 205–215. [Google Scholar] [CrossRef]
- Tempesta, T. The Perception of Agrarian Historical Landscapes: A Study of the Veneto Plain in Italy. Landsc. Urban Plan. 2010, 97, 258–272. [Google Scholar] [CrossRef]
- Lindemann-Matthies, P.; Briegel, R.; Schüpbach, B.; Junge, X. Aesthetic Preference for a Swiss Alpine Landscape: The Impact of Different Agricultural Land-Use with Different Biodiversity. Landsc. Urban Plan. 2010, 98, 99–109. [Google Scholar] [CrossRef]
- Bulut, Z.; Yilmaz, H. Determination of Landscape Beauties through Visual Quality Assessment Method: A Case Study for Kemaliye (Erzincan/Turkey). Environ. Monit. Assess. 2008, 141, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Han, K. Environment and Behavior Responses to Six Major Terrestrial Biomes in Terms of Scenic Beauty, Preference. Environ. Behav. 2007, 39, 529–556. [Google Scholar] [CrossRef]
- Arriaza, M. Assessing the Visual Quality of Rural Landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Swanwick, C. Land Use Policy Society’s Attitudes to and Preferences for Land and Landscape. Land Use Policy 2009, 26, 62–75. [Google Scholar] [CrossRef]
- Strumse, E. Perceptual Dimensions in the Visual Preferences for Agrarian Landscapes in Western Norway. J. Environ. Psychol. 1994, 14, 281–292. [Google Scholar] [CrossRef]
- Sklenicka, P.; Molnarova, K. Visual Perception of Habitats Adopted for Post-Mining Landscape Rehabilitation. Environ. Manag. 2010, 46, 424–435. [Google Scholar] [CrossRef]
- Misgav, A. Visual Preference of the Public for Vegetation Groups in Israel. Landsc. Urban Plan. 2000, 48, 143–159. [Google Scholar] [CrossRef]
- den Berg, A.E.; Koole, S.L. New Wilderness in the Netherlands: An Investigation of Visual Preferences for Nature Development Landscapes. Landsc. Urban Plan. 2006, 78, 362–372. [Google Scholar] [CrossRef]
- Naspetti, S.; Mandolesi, S.; Zanoli, R. Land Use Policy Using Visual Q Sorting to Determine the Impact of Photovoltaic Applications on the Landscape. Land Use Policy 2016, 57, 564–573. [Google Scholar] [CrossRef]
- Kaltenborn, B.P.; Bjerke, T. Association between Environmental Value Orientations and Landscape Preferences. Landsc. Urban Plan. 2002, 59, 1–11. [Google Scholar] [CrossRef]
- Kellomäki, S.; Savolainen, R. The Scenic Value of the Forest Landscape as Assessed in the Field and the Laboratory. Landsc. Plan. 1984, 11, 97–107. [Google Scholar] [CrossRef]
- Coeterier, J.F. Dominant Attributes in the Perception and Evaluation of the Dutch Landscape. Landsc. Urban Plan. 1996, 34, 27–44. [Google Scholar] [CrossRef]
- Sevenant, M.; Antrop, M. Cognitive Attributes and Aesthetic Preferences in Assessment and Differentiation of Landscapes. J. Environ. Manag. 2009, 90, 2889–2899. [Google Scholar] [CrossRef]
- Browning, M.H.E.M.; Rigolon, A.; Mcanirlin, O.; Violet, H. Landscape and Urban Planning Where Greenspace Matters Most: A Systematic Review of Urbanicity, Greenspace, and Physical Health. Landsc. Urban Plan. 2022, 217, 104233. [Google Scholar] [CrossRef]
- Huai, S.; Van de Voorde, T. Which Environmental Features Contribute to Positive and Negative Perceptions of Urban Parks? A Cross-Cultural Comparison Using Online Reviews and Natural Language Processing Methods. Landsc. Urban Plan. 2022, 218, 104307. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Vojar, J. International Journal of Mining, How Does the Representation Rate of Features in a Landscape Affect Visual Preferences? A Case Study from a Post-Mining Landscape. Int. J. Min. Reclam. Environ. 2015, 29, 37–41. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Molnarova, K.; Vojar, J. Does the Composition of Landscape Photographs Affect Visual Preferences? The Rule of the Golden Section and the Position of the Horizon. J. Environ. Psychol. 2014, 38, 143–152. [Google Scholar] [CrossRef]
- Barroso, F.L.; Pinto-Correia, T.; Ramos, I.L.; Surová, D.; Menezes, H. Dealing with Landscape Fuzziness in User Preference Studies: Photo-Based Questionnaires in the Mediterranean Context. Landsc. Urban Plan. 2012, 104, 329–342. [Google Scholar] [CrossRef]
- Howley, P.; Donoghue, C.O.; Hynes, S. Exploring Public Preferences for Traditional Farming Landscapes. Landsc. Urban Plan. 2012, 104, 66–74. [Google Scholar] [CrossRef]
- Howley, P. Landscape Aesthetics: Assessing the General Publics’ Preferences towards Rural Landscapes. Ecol. Econ. 2011, 72, 161–169. [Google Scholar] [CrossRef]
- Kang, N.; Liu, C. Towards Landscape Visual Quality Evaluation: Methodologies, Technologies, and Recommendations. Ecol. Indic. 2022, 142, 109174. [Google Scholar] [CrossRef]
- Aznar-Casanova, J.; Matsushima, E. Interaction between Egocentric and Exocentric Frames of Reference Assessed by Perceptual Constancy Parameters. Cogn. Stud. 2008, 15, 22–37. [Google Scholar]
- Harrower, M.; Sheesley, B. Moving beyond Novelty: Creating Effective 3-D Fly-over Maps. 2002. Available online: https://icaci.org/files/documents/ICC_proceedings/ICC2005/htm/pdf/oral/TEMA15/Session%205/MARK%20HARROWER.pdf (accessed on 5 June 2022).
- Misthos, L.-M. Mountainous Landscape Exploration Visualizing Viewshed Changes in Animated Maps. Master’s Thesis, National Technical University of Athens, Athens, Greece, 2014. [Google Scholar]
- Forman, R.T.; Forman, R.T.T.; Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Turner, M.G.; Gardner, R.H.; O’neill, R.V.; O’Neill, R.V. Landscape Ecology in Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2001; Volume 401. [Google Scholar]
- Gardner, R.H.; Milne, B.T.; Turner, M.G.; Neill, R.V.O. Neutral Models for the Analysis of Broad-Scale Landscape Pattern. Landsc. Ecol. 1987, 1, 19–28. [Google Scholar] [CrossRef]
- Turnerl, M.G.; Neill, R.V.O.; Gardner, R.H.; Milne, B.T. Effects of Changing Spatial Scale on the Analysis of Landscape Pattern. Landsc. Ecol. 1989, 3, 153–162. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Godron, M. Landscape Ecology Wiley New York; John Wiley and Sons Ltd.: New York, NY, USA, 1986. [Google Scholar]
- Morzaria-Luna, L.; Callaway, J.C.; Sullivan, G.; Zedler, J.B. Relationship between Topographic Heterogeneity and Vegetation Patterns in a Californian Salt Marsh. J. Veg. Sci. 2004, 15, 523–530. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. FRAGSTATS v4. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 12 September 2016).
- Mücher, C.A.; Klijn, J.A.; Wascher, D.M.; Schaminée, J.H.J. A New European Landscape Classification (LANMAP): A Transparent, Flexible and User-Oriented Methodology to Distinguish Landscapes. Ecol. Indic. 2010, 10, 87–103. [Google Scholar] [CrossRef]
- Swanwick, C. Landscape Character Assessment: Guidance for England and Scotland; Countryside Agency: London, UK, 2002. [Google Scholar]
- Wascher, D.M. European Landscape Character Areas: Typologies, Cartography and Indicators for the Assessment of Sustainable Landscapes; Landscape Europe: Zeist, The Netherlands, 2005. [Google Scholar]
- Mücher, S.; Wascher, D. European Landscape Characterisation. In Europe’s Living Landscapes; KNNV Publishing: Zeist, The Netherlands, 2007; pp. 36–47. [Google Scholar]
- Brabyn, L. Landscape Classification Using GIS and National Digital Databases Landscape Classification Using GIS and National Digital Databases. Landsc. Res. 2007, 21, 37–41. [Google Scholar]
- Brabyn, L. Classifying Landscape Character. Landsc. Res. 2009, 34, 37–41. [Google Scholar] [CrossRef]
- Mücher, C.A.; Bunce, R.G.H.; Jongman, R.H.G.; Klijn, J.A.; Koomen, A.J.M.; Metzger, M.J.; Wascher, D.M. Identification and Characterisation of Environments and Landscapes in Europe; Alterra: Denver, CO, USA, 2003. [Google Scholar]
- Brabyn, L. Solutions for Characterising Natural Landscapes in New Zealand Using Geographical Information Systems. J. Environ. Manag. 2005, 76, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Dramstad, W.E.; Tveit, M.S.; Fjellstad, W.J.; Fry, G.L.A. Relationships between Visual Landscape Preferences and Map-Based Indicators of Landscape Structure. Landsc. Urban Plan. 2006, 78, 465–474. [Google Scholar] [CrossRef]
- Inglis, N.C.; Vukomanovic, J.; Costanza, J.; Singh, K.K. From Viewsheds to Viewscapes: Trends in Landscape Visibility and Visual Quality Research. Landsc. Urban Plan. 2022, 224, 104424. [Google Scholar] [CrossRef]
- Schirpke, U.; Timmermann, F.; Tappeiner, U.; Tasser, E. Cultural Ecosystem Services of Mountain Regions: Modelling the Aesthetic Value. Ecol. Indic. 2016, 69, 78–90. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Lavdas, A.A. Potential of Eye-Tracking Simulation Software for Analyzing Landscape Preferences. PLoS ONE 2022, 17, e0273519. [Google Scholar] [CrossRef] [PubMed]
- Nutsford, D.; Reitsma, F.; Pearson, A.L.; Kingham, S. Personalising the Viewshed: Visibility Analysis from the Human Perspective. Appl. Geogr. 2015, 62, 1–7. [Google Scholar] [CrossRef]
- Peacocke, C. Perceptual Content; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Peacocke, C. A Study of Concepts; The MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Peacocke, C. Nonconceptual Content Defended. Philos. Phenomenol. Res. 1998, 58, 381. [Google Scholar] [CrossRef]
- McDowell, J.H. Mind and World; Harvard University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- McDowell, J. Reply to Peacocke on Mind and World. Philos. Phenomenol. Res. 1998, 5, 414–419. [Google Scholar]
- Fodor, J.A. The Modularity of Mind; MIT Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Fodor, J. Observation Reconsidered. Philos. Sci. 1984, 51, 23–43. [Google Scholar] [CrossRef]
- Churchland, P.M. Matter and Consciousness; MIT Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Churchland, P.M. Scientific Realism and the Plasticity of Mind; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Churchland, P.M. Perceptual Plasticity and Theoretical Neutrality: A Reply to Jerry Fodor. Philos. Sci. 1988, 55, 167–187. [Google Scholar] [CrossRef]
- Pylyshyn, Z. Is Vision Continuous with Cognition? The Case for Cognitive Impenetrability of Visual Perception. Behav. Brain Sci. 1999, 22, 341–423. [Google Scholar] [CrossRef] [PubMed]
- Pylyshyn, Z.W. Seeing and Visualizing: It’s Not What You Think; MIT Press: Cambridge, MA, USA, 2003; ISBN 0262162172. [Google Scholar]
- Raftopoulos, A.; Zeimbekis, J. The Cognitive Penetrability of Perception: An Overview. In The Cognitive Penetrability of Perception: New Philosophical Perspectives; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Pagondiotis, C. Cognitive (Im)Penetrability of Vision: Restricting Vision versus Restricting Cognition. In The Cognitive Penetrability of Perception: New Philosophical Perspectives; Zeimbekis, J., Raftopoulos, A., Eds.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Raftopoulos, A. The Cognitive Impenetrability of Perception and Theory-Ladenness. J. Gen. Philos. Sci. 2015, 46, 87–103. [Google Scholar] [CrossRef]
- Moore, C.M. Cognitive Impenetrability of Early Vision Does Not Imply Cognitive Impenetrability of Perception. Behav. Brain Sci. 1999, 22, 385–386. [Google Scholar] [CrossRef]
- Julesz, B. Early Vision and Focal Attention. Rev. Mod. Phys. 1991, 63, 735. [Google Scholar] [CrossRef]
- Thompson, C.W. Landscape Perception and Environmental Psychology. In The Routledge Companion to Landscape Studies; Routledge: London, UK, 2013; pp. 43–60. [Google Scholar]
- Talento, K.; Amado, M.; Kullberg, J.C. Landscape-A Review with a European Perspective. Land 2019, 8, 85. [Google Scholar] [CrossRef]
- Antrop, M. Antrop, M. A Brief History of Landscape Research. In The Routledge Companion to Landscape Studies; Routledge: London, UK, 2018; pp. 1–15. [Google Scholar]
- Dupont, L. Take a Look at the Landscape!: An Eye-Tracking Study of Landscape Observation and Its Influencing Factors. Ph.D. Thesis, Ghent University, Flanders, Belgium, 2016. [Google Scholar]
- Unwin, K.I. The Relationship of Observer and Landscape in Landscape Evaluation. Trans. Inst. Br. Geogr. 1975, 130–134. [Google Scholar] [CrossRef]
- Council of Europe. The European Landscape Convention—Firenze, 20X; (ETS No. 176) Official Text in English; Council of Europe: Strasbourg, France, 2000. [Google Scholar]
- Wylie, J. Landscape and Phenomenology. In The Routledge Companion to Landscape Studies; Routledge: London, UK, 2013; pp. 72–83. [Google Scholar]
- Crouch, D. Landscape, Performance and Performativity. In The Routledge Companion to Landscape Studies; Routledge: London, UK, 2013; pp. 137–146. [Google Scholar]
- DeLue, R.; Elkins, J. Landscape Theory; Routledge: London, UK, 2010; Volume 6. [Google Scholar]
- Gobster, P.H.; Nassauer, J.I.; Daniel, T.C.; Fry, G. The Shared Landscape: What Does Aesthetics Have to Do with Ecology? Landsc. Ecol. 2007, 22, 959–972. [Google Scholar] [CrossRef]
- Maehr, A.M.; Watts, G.R.; Hanratty, J.; Talmi, D. Landscape and Urban Planning Emotional Response to Images of Wind Turbines: A Psychophysiological Study of Their Visual Impact on the Landscape. Landsc. Urban Plan. 2015, 142, 71–79. [Google Scholar] [CrossRef]
- Stokstad, G.; Krøgli, S.O.; Dramstad, W.E. The Look of Agricultural Landscapes—How Do Non-Crop Landscape Elements Contribute to Visual Preferences in a Large-Scale Agricultural Landscape? Nor. Geogr. Tidsskr.—Nor. J. Geogr. 2020, 74, 111–122. [Google Scholar] [CrossRef]
- Rayner, K. Eye Movements and Visual Cognition: Introduction. In Eye Movements and Visual Cognition: Scene Perception and Reading; Rayner, K., Ed.; Springer Science & Business Media: New York, NY, USA, 1992. [Google Scholar]
- Duchowski, A.T. A Breadth-First Survey of Eye-Tracking Applications. Behav. Res. Methods Instrum. Comput. 2003, 34, 455–470. [Google Scholar] [CrossRef]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; OUP Oxford: Oxford, UK, 2011. [Google Scholar]
- Duchowski, A.T. Eye Tracking Methodology: Theory and Practice, 3rd ed.; Springer International Publishing: Clemson, SC, USA, 2017; ISBN 9783319578811. [Google Scholar]
- Holmqvist, K.; Örbom, S.L.; Hooge, I.T.C.; Niehorster, D.C.; Alexander, R.G.; Andersson, R.; Benjamins, J.S.; Blignaut, P.; Brouwer, A.-M.; Chuang, L.L.; et al. Eye Tracking: Empirical Foundations for a Minimal Reporting Guideline. Behav. Res. Methods 2022, 55, 364–416. [Google Scholar] [CrossRef] [PubMed]
- Estrany, B.; Fuster-Parra, P. Human Eye Tracking through Electro-Oculography (EOG): A Review BT—Cooperative Design, Visualization, and Engineering; Luo, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 75–85. [Google Scholar]
- Massin, L.; Nourrit, V.; Lahuec, C.; Seguin, F.; Adam, L.; Daniel, E.; de Bougrenet de la Tocnaye, J.-L. Development of a New Scleral Contact Lens with Encapsulated Photodetectors for Eye Tracking. Opt. Express 2020, 28, 28635–28647. [Google Scholar] [CrossRef]
- Zemblys, R.; Komogortsev, O. Developing Photo-Sensor Oculography (PS-OG) System for Virtual Reality Headsets. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 14–17 June 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar]
- Haslwanter, T.; Clarke, A.H. Chapter 5—Eye Movement Measurement: Electro-Oculography and Video-Oculography. In Vertigo and Imbalance: Clinical Neurophysiologyof the Vestibular System; Elsevier: Amsterdam, The Netherlands, 2010; Volume 9, pp. 61–79. ISBN 1567-4231. [Google Scholar]
- Papoutsaki, A.; Laskey, J.; Huang, J. SearchGazer: Webcam Eye Tracking for Remote Studies of Web Search. In Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval, Oslo, Norway, 7–11 March 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 17–26. [Google Scholar]
- Asghari, P.; Schindler, M.; Lilienthal, A.J. Can Eye Tracking with Pervasive Webcams Replace Dedicated Eye Trackers? An Experimental Comparison of Eye-Tracking Performance BT—HCI International 2022—Late Breaking Posters; Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 3–10. [Google Scholar]
- Semmelmann, K.; Weigelt, S. Online Webcam-Based Eye Tracking in Cognitive Science: A First Look. Behav. Res. Methods 2018, 50, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Sirois, S.; Brisson, J. Pupillometry. WIREs Cogn. Sci. 2014, 5, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Mahanama, B.; Jayawardana, Y.; Rengarajan, S.; Jayawardena, G.; Chukoskie, L.; Snider, J.; Jayarathna, S. Eye Movement and Pupil Measures: A Review. Front. Comput. Sci. 2022, 3, 733531. [Google Scholar] [CrossRef]
- Jacob, R.J.K.; Karn, K.S. Eye Tracking in Human—Computer Interaction and Usability Research: Ready to Deliver the Promises. In The Mind’s Eye; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Poole, A.; Ball, L.J. Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects. In Encyclopedia of Human Computer Interaction; Idea Group Reference: Hershey, PA, USA, 2005. [Google Scholar]
- Land, M.F. Oculomotor Behaviour in Vertebrates and Invertebrates. In The Oxford Handbook of Eye Movements; Oxford University Press: Oxford, UK, 2011; pp. 3–15. [Google Scholar]
- Skaramagkas, V.; Giannakakis, G.; Ktistakis, E.; Manousos, D.; Karatzanis, I.; Tachos, N.S.; Tripoliti, E.; Marias, K.; Fotiadis, D.I.; Tsiknakis, M. Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes. IEEE Rev. Biomed. Eng. 2023, 16, 260–277. [Google Scholar] [CrossRef]
- Krassanakis, V.; Menegaki, M.; Misthos, L.-M. LandRate Toolbox: An Adaptable Tool for Eye Movement Analysis and Landscape Rating. In Eye Tracking for Spatial Research, Proceedings of the 3rd International Workshop; Kiefer, P., Giannopoulos, I., Göbel, F., Raubal, M., Duchowski, A.T., Eds.; ETH Zurich: Zurich, Switzerland, 2018. [Google Scholar]
- Blascheck, T.; Kurzhals, K.; Raschke, M.; Burch, M.; Weiskopf, D.; Ertl, T. State-of-the-Art of Visualization for Eye Tracking Data. In EuroVis—STARs; The Eurographics Association: Munich, Germany, 2014. [Google Scholar]
- Blascheck, T.; Kurzhals, K.; Raschke, M.; Burch, M.; Weiskopf, D.; Ertl, T. Visualization of Eye Tracking Data: A Taxonomy and Survey. Comput. Graph. Forum 2017, 36, 260–284. [Google Scholar] [CrossRef]
- Dolezalova, J.; Popelka, S. ScanGraph: A Novel Scanpath Comparison Method Using Visualisation of Graph Cliques. J. Eye Mov. Res. 2016, 9. [Google Scholar] [CrossRef]
- Krassanakis, V. Aggregated Gaze Data Visualization Using Contiguous Irregular Cartograms. Digital 2021, 1, 130–144. [Google Scholar] [CrossRef]
- Research, E.M. Software. Available online: https://www.eyemovementresearch.com/software/ (accessed on 28 June 2023).
- Carter, B.T.; Luke, S.G. Best Practices in Eye Tracking Research. Int. J. Psychophysiol. 2020, 155, 49–62. [Google Scholar] [CrossRef]
- Krassanakis, V.; Cybulski, P. A Review on Eye Movement Analysis in Map Reading Process: The Status of the Last Decade. Geod. Cartogr. 2019, 68, 191–209. [Google Scholar] [CrossRef]
- Krassanakis, V.; Cybulski, P. Eye Tracking Research in Cartography: Looking into the Future. ISPRS Int. J. Geo-Inf. 2021, 10, 411. [Google Scholar] [CrossRef]
- Kiefer, P.; Giannopoulos, I.; Raubal, M.; Duchowski, A. Eye Tracking for Spatial Research: Cognition, Computation, Challenges. Spat. Cogn. Comput. 2017, 17, 1–19. [Google Scholar] [CrossRef]
- De Lucio, J.V.; Mohamadian, M.; Ruiz, J.P.; Banayas, J.; Bernaldez, F.G. Visual Landscape Exploration as Revealed by Eye Movement Tracking. Landsc. Urban Plan. 1996, 34, 135–142. [Google Scholar] [CrossRef]
- Dupont, L.; Antrop, M.; Van Eetvelde, V. Eye-Tracking Analysis in Landscape Perception Research: Influence of Photograph Properties and Landscape Characteristics. Landsc. Res. 2014, 39, 417–432. [Google Scholar] [CrossRef]
- Valtchanov, D.; Ellard, C.G. Cognitive and Affective Responses to Natural Scenes: Effects of Low Level Visual Properties on Preference, Cognitive Load and Eye-Movements. J. Environ. Psychol. 2015, 43, 184–195. [Google Scholar] [CrossRef]
- Itti, L. Visual Salience. Scholarpedia 2007, 2, 3327. [Google Scholar] [CrossRef]
- Kashyap, S.; Ivanov, D.; Havlicek, M.; Sengupta, S.; Poser, B.A.; Uludağ, K. Resolving Laminar Activation in Human V1 Using Ultra-High Spatial Resolution FMRI at 7T. Sci. Rep. 2018, 8, 17063. [Google Scholar] [CrossRef]
- Dumoulin, S.O.; Fracasso, A.; van der Zwaag, W.; Siero, J.C.W.; Petridou, N. Ultra-High Field MRI: Advancing Systems Neuroscience towards Mesoscopic Human Brain Function. Neuroimage 2018, 168, 345–357. [Google Scholar] [CrossRef]
- Lawrence, S.J.D.; Formisano, E.; Muckli, L.; de Lange, F.P. Laminar FMRI: Applications for Cognitive Neuroscience. Neuroimage 2019, 197, 785–791. [Google Scholar] [CrossRef]
- Bréchet, L.; Brunet, D.; Birot, G.; Gruetter, R.; Michel, C.M.; Jorge, J. Capturing the Spatiotemporal Dynamics of Self-Generated, Task-Initiated Thoughts with EEG and FMRI. Neuroimage 2019, 194, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Peitek, N.; Siegmund, J.; Parnin, C.; Apel, S.; Hofmeister, J.C.; Brechmann, A. Simultaneous Measurement of Program Comprehension, with FMRI and Eye Tracking: A Case Study. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Oulu, Finland, 11–12 October 2018. [Google Scholar] [CrossRef]
- Rad, P.N.; Behzadi, F.; Yazdanfar, A.; Ghamari, H.; Zabeh, E.; Lashgari, R. Cognitive and Perceptual Influences of Architectural and Urban Environments with an Emphasis on the Experimental Procedures and Techniques. PsyArxiv Prepr. 2021. [Google Scholar] [CrossRef]
- Durieux, J.; Rombouts, S.A.R.B.; de Vos, F.; Koini, M.; Wilderjans, T.F. Clusterwise Independent Component Analysis (C-ICA): Using FMRI Resting State Networks to Cluster Subjects and Find Neurofunctional Subtypes. J. Neurosci. Methods 2022, 382, 109718. [Google Scholar] [CrossRef]
- Wen, D.; Wei, Z.; Zhou, Y.; Li, G.; Zhang, X.; Han, W. Deep Learning Methods to Process Fmri Data and Their Application in the Diagnosis of Cognitive Impairment: A Brief Overview and Our Opinion. Front. Neuroinform. 2018, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, T.; Kamitani, Y. Generic Decoding of Seen and Imagined Objects Using Hierarchical Visual Features. Nat. Commun. 2017, 8, 15037. [Google Scholar] [CrossRef] [PubMed]
- Tithi, I.D.; Shuchi, U.S.K.; Tasneem, N.A.; Mobin, M.I.; Alam, M.A. Brain FMRI Image Classification and Statistical Representation of Visual Objects. In Proceedings of the 2nd 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Tan, J.H.; Chen, Y.; Chen, Y.; Li, D.; Yang, L.; Su, J.; Huang, X.; Che, W. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition. Front. Neurosci. 2020, 14, 1344. [Google Scholar] [CrossRef]
- Aydemir, O.; Kayikcioglu, T. Decision Tree Structure Based Classification of EEG Signals Recorded during Two Dimensional Cursor Movement Imagery. J. Neurosci. Methods 2014, 229, 68–75. [Google Scholar] [CrossRef]
- Muukkonen, I.; Ölander, K.; Numminen, J.; Salmela, V.R. Spatio-Temporal Dynamics of Face Perception. Neuroimage 2020, 209, 116531. [Google Scholar] [CrossRef]
- Theeuwes, J. Top–down and Bottom–up Control of Visual Selection. Acta Psychol. 2010, 135, 77–99. [Google Scholar] [CrossRef]
- Litton, R.B. Forest Landscape Description and Inventories: A Basis for Land Planning and Design; US Department of Agriculture, Forest Service, Pacific Forest and Range: Portland, OR, USA, 1968. [Google Scholar]
- Milcu, A.I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research. Ecol. Soc. 2013, 18, 44. [Google Scholar] [CrossRef]
- Daniel, T.C.; Vining, J. Methodological Issues in the Assessment of Landscape Quality. In Behavior and the Natural Environment; Altman, I., Wohlwill, J.F., Eds.; Springer: Boston, MA, USA, 1983; pp. 39–84. ISBN 978-1-4613-3539-9. [Google Scholar]
- Zube, E.H.; Sell, J.L.; Taylor, J.G. Landscape Perception: Research, Application and Theory. Landsc. Plan. 1982, 9, 1–33. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Molnarova, K.; Salek, M. Visual Preferences for Physical Attributes of Mining and Post-Mining Landscapes with Respect to the Sociodemographic Characteristics of Respondents. Ecol. Eng. 2012, 43, 34–44. [Google Scholar] [CrossRef]
- Bergen, S.D.; Ulbricht, C.A.; Fridley, J.L.; Ganter, M.A. The Validity of Computer-Generated Graphic Images of Forest Landscape. J. Environ. Psychol. 1995, 15, 135–146. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S.; Ryan, R. With People in Mind: Design and Management of Everyday Nature; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Palmer, J.F. A Diversity of Approaches to Visual Impact Assessment. Land 2022, 11, 1006. [Google Scholar] [CrossRef]
- Molnarova, K.; Sklenicka, P.; Stiborek, J.; Svobodova, K.; Salek, M.; Brabec, E. Visual Preferences for Wind Turbines: Location, Numbers and Respondent Characteristics. Appl. Energy 2012, 92, 269–278. [Google Scholar] [CrossRef]
- Misthos, L.; Messaris, G.; Damigos, D.; Menegaki, M. Exploring the Perceived Intrusion of Mining into the Landscape Using the Fuzzy Cognitive Mapping Approach. Ecol. Eng. 2017, 101, 60–74. [Google Scholar] [CrossRef]
- Spielhofer, R.; Hunziker, M.; Kienast, F.; Wissen, U.; Gr, A. Does Rated Visual Landscape Quality Match Visual Features? An Analysis for Renewable Energy Landscapes Landscape and Urban Planning Does Rated Visual Landscape Quality Match Visual Features? An Analysis for Renewable Energy Landscapes. Landsc. Urban Plan. 2021, 209, 104000. [Google Scholar] [CrossRef]
- Dupont, L.; Ooms, K.; Antrop, M.; Etvelde, V. Testing the validity of a saliency-based method for visual assessment of constructions in the landscape. Landsc. Urban Plan. 2017, 167, 325–338. [Google Scholar] [CrossRef]
- Dentoni, V.; Massacci, G. International Journal of Mining, Visibility of Surface Mining and Impact Perception. Int. J. Min. Reclam. Environ. 2007, 21, 6–13. [Google Scholar] [CrossRef]
- Dentoni, V.; Massacci, G. Assessment of Visual Impact Induced by Surface Mining with Reference to a Case Study Located in Sardinia (Italy). Environ. Earth Sci. 2013, 68, 1485–1493. [Google Scholar] [CrossRef]
- Dentoni, V.; Grosso, B.; Massacci, G.; Soddu, G.P. Visual Impact Evaluation of Mines and Quarries: The Updated Lvi Method. Environ. Earth Sci. 2020, 79, 100. [Google Scholar] [CrossRef]
- Menegaki, M.; Koutiva, I.; Kaliampakos, D. Assessing the Chromatic Contrast in Open Surface Excavations: A Comparative Study between Subjective and Quantitative Approaches. Int. J. Min. Reclam. Environ. 2015, 29, 112–124. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring Human Perceptions of a Large-Scale Urban Region Using Machine Learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Ramírez, T.; Hurtubia, R.; Lobel, H.; Rossetti, T. Measuring Heterogeneous Perception of Urban Space with Massive Data and Machine Learning: An Application to Safety. Landsc. Urban Plan. 2021, 208, 104002. [Google Scholar] [CrossRef]
- Rimbert, S. Approches Des Paysages. Espace. Geogr. 1973, 2, 233–241. [Google Scholar] [CrossRef]
- Simensen, T.; Halvorsen, R.; Erikstad, L. Methods for Landscape Characterisation and Mapping: A Systematic Review. Land Use Policy 2018, 75, 557–569. [Google Scholar] [CrossRef]
- Erikstad, L.; Uttakleiv, L.A.; Halvorsen, R. Characterisation and Mapping of Landscape Types, a Case Study from Norway. Belgeo. Rev. Belg. Géogr. 2015. [Google Scholar] [CrossRef]
- Jones, M.; Howard, P.; Olwig, K.R.; Primdahl, J.; Jones, M.; Howard, P.; Olwig, K.R.; Primdahl, J.; Jones, M.; Howard, P.; et al. Multiple Interfaces of the European Landscape Convention Multiple Interfaces of the European Landscape Convention. Nor. Geogr. Tidsskr.—Nor. J. Geogr. 2007, 61, 207–216. [Google Scholar] [CrossRef]
- Fairclough, G. ‘The Long Chain’: Archaeology, Historical Landscape Characterization and Time Depth in the Landscape. Landsc. Interfaces Cult. Herit. Chang. Landsc. 2003, 1, 295–318. [Google Scholar]
- Fahrig, L. When Is a Landscape Perspective Important. In Issues and Perspectives in Landscape Ecology; Cambridge University Press: Cambridge, UK, 2005; pp. 3–10. [Google Scholar]
- Wiens, J.A. Landscape Mosaics and Ecological Theory. In Mosaic Landscapes and Ecological Processes; Springer: Dordrecht, The Netherlands, 1995; pp. 1–26. [Google Scholar]
- Uuemaa, E.; Antrop, M.; Marja, R. Landscape Metrics and Indices: An Overview of Their Use in Landscape Research Imprint/Terms of Use. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- Henner, C.M.; Chamberlain, M.J.; Leopold, B.D.; Burger Jr, L.W. A Multi-Resolution Assessment of Raccoon Den Selection. J. Wildl. Manag. 2004, 68, 179–187. [Google Scholar] [CrossRef]
- Kindall, J.L.; Van Manen, F.T. Identifying Habitat Linkages for American Black Bears in North Carolina, USA. J. Wildl. Manag. 2007, 71, 487–495. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Yao, Z. Analyzing Urban Sprawl Spatial Fragmentation Using Multi-Temporal Satellite Images. GIScience Remote Sens. 2006, 43, 218–232. [Google Scholar] [CrossRef]
- Gonzalez-Abraham, C.E.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Building Patterns and Landscape Fragmentation in Northern Wisconsin, USA. Landsc. Ecol. 2007, 22, 217–230. [Google Scholar] [CrossRef]
- Lee, S.-W.; Ellis, C.D.; Kweon, B.-S.; Hong, S.-K. Relationship between Landscape Structure and Neighborhood Satisfaction in Urbanized Areas. Landsc. Urban Plan. 2008, 85, 60–70. [Google Scholar] [CrossRef]
- Sang, N.; Miller, D. Landscape Metrics and Visual Topology in the Analysis of Landscape Preference. Environ. Plan. B Plan. Des. 2008, 35, 504–521. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. {FRAGSTATS}: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2002. [Google Scholar]
- Jung, M. Ecological Informatics LecoS—A Python Plugin for Automated Landscape Ecology Analysis. Ecol. Inform. 2016, 31, 18–21. [Google Scholar] [CrossRef]
- Yu, M. Ecological Informatics An ArcMap Plug-in for Calculating Landscape Metrics of Vector Data ☆. Ecol. Inform. 2019, 50, 207–219. [Google Scholar] [CrossRef]
- Id, B. PyLandStats: An Open-Source Pythonic Library to Compute Landscape Metrics. PLoS ONE 2019, 14, e0225734. [Google Scholar] [CrossRef]
- Terkenli, T.S.; Gkoltsiou, A.; Kavroudakis, D. The Interplay of Objectivity and Subjectivity in Landscape Character Assessment: Qualitative and Quantitative Approaches and Challenges. Land 2021, 10, 53. [Google Scholar] [CrossRef]
- Tveit, M.; Ode, Å.; Fry, G. Key Concepts in a Framework for Analysing Visual Landscape Character Key Concepts in a Framework for Analysing Visual Landscape Character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Ode, Å.; Tveit, M.S.; Fry, G. Using Indicators: Touching Base with Landscape Aesthetic Theory Capturing Landscape Visual Character Using Indicators: Touching Base with Landscape Aesthetic Theory. Landsc. Res. 2008, 33, 89–117. [Google Scholar] [CrossRef]
- Lothian, A. Visual Resource Stewardship—An International Perspective. Land 2022, 11, 451. [Google Scholar] [CrossRef]
- Mahan, A.; Mansouri, S.A. Developing a Landscape Assessment Model. Sci. J. NAZAR Res. Cent. (Nrc) Art Archit. Urban. 2017, 14, 31–40. [Google Scholar]
- Scott, A. Assessing Public Perception of Landscape: The LANDMAP Experience LANDMAP Experience. Landsc. Res. 2002, 27, 271–295. [Google Scholar] [CrossRef]
- Atik, M.; Karadeniz, N. New Approaches for New Regions. In Routledge Handbook of Landscape Character Assessment; Fairclough, G., Herlin, I.S., Swanwick, C., Eds.; Routledge: Abingdon, VA, USA, 2018; pp. 69–79. [Google Scholar]
- Asur, F.; Deniz Sevimli, S.; Yazici, K. Visual Preferences Assessment of Landscape Character Types Using Data Mining Methods (Apriori Algorithm): The Case of Alt{\i}nsaç and Inkoy (Van/Turkey). J. Agric. Sci. Technol. 2020, 22, 247–260. [Google Scholar]
- Criado, M.; Mart, A.; Santos-franc, F.; Merch, L. Landscape Evaluation as a Complementary Tool in Environmental Assessment. Study Case in Urban Areas: Salamanca (Spain). Sustainability 2020, 12, 6395. [Google Scholar] [CrossRef]
- Lee, K.Y.; Seo, J.I.; Kim, K.; Lee, Y.; Kweon, H.; Kim, J. Application of Viewshed and Spatial Aesthetic Analyses to Forest Practices for Mountain Scenery Improvement in the Republic of Korea. Sustainability 2019, 11, 2687. [Google Scholar] [CrossRef]
- Brabyn, L. Modelling Landscape Experience Using “Experions”. Appl. Geogr. 2015, 62, 210–216. [Google Scholar] [CrossRef]
- Misthos, L.M.; Nakos, B.; Krassanakis, V.; Menegaki, M. The Effect of Topography and Elevation on Viewsheds in Mountain Landscapes Using Geovisualization. Int. J. Cartogr. 2019, 5, 44–66. [Google Scholar] [CrossRef]
- Fry, G.; Tveit, M.S.; Ode, Å.; Velarde, M.D. The Ecology of Visual Landscapes: Exploring the Conceptual Common Ground of Visual and Ecological Landscape Indicators. Ecol. Indic. 2009, 9, 933–947. [Google Scholar] [CrossRef]
- Palmer, J.F. The Contribution of a GIS-Based Landscape Assessment Model to a Scientifically Rigorous Approach to Visual Impact Assessment. Landsc. Urban Plan. 2019, 189, 80–90. [Google Scholar] [CrossRef]
- Ode, A.; Sundli, M.; Fry, G. Advantages of Using Different Data Sources in Assessment of Landscape Change and Its Effect on Visual Scale. Ecol. Indic. 2010, 10, 24–31. [Google Scholar] [CrossRef]
- Yang, P.P.-J.; Putra, S.Y.; Li, W. Viewsphere: A GIS-Based 3D Visibility Analysis for Urban Design Evaluation. Environ. Plan. B Plan. Des. 2007, 34, 971–992. [Google Scholar] [CrossRef]
- Bartie, P.; Reitsma, F.; Kingham, S.; Mills, S. Computers, Environment and Urban Systems Advancing Visibility Modelling Algorithms for Urban Environments. Comput. Environ. Urban Syst. 2010, 34, 518–531. [Google Scholar] [CrossRef]
- Weitkamp, G.; Bregt, A.; Van Lammeren, R.; Weitkamp, G.; Bregt, A.; Lammeren, R.O.N.V.A.N. Measuring Visible Space to Assess Landscape Openness Measuring Visible Space to Assess Landscape Openness. Landsc. Res. 2011, 36, 127–150. [Google Scholar] [CrossRef]
- Domingo-santos, J.M.; De Villarán, R.F.; Rapp-arrarás, Í.; Provens, E.C. De Landscape and Urban Planning The Visual Exposure in Forest and Rural Landscapes: An Algorithm and a GIS Tool. Landsc. Urban Plan. 2011, 101, 52–58. [Google Scholar] [CrossRef]
- Fisher-Gewirtzman, D. Integrating ‘Weighted Views’ to Quantitative 3D Visibility Analysis as a Predictive Tool for Perception of Space. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 345–366. [Google Scholar] [CrossRef]
- Ode, A.; Fry, G.; Tveit, M.S.; Messager, P.; Miller, D. Indicators of Perceived Naturalness as Drivers of Landscape Preference. J. Environ. Manag. 2009, 90, 375–383. [Google Scholar] [CrossRef]
- Lavdas, A.A.; Tasser, E.; Lavdas, A.A. Aesthetic Preference Is Related to Organized Complexity. PLoS ONE 2020, 15, e0235257. [Google Scholar] [CrossRef]
- Liu, X.; Tvinnereim, E.; Grimsrud, K.M.; Lindhjem, H.; Velle, L.G.; Saure, H.I.; Lee, H. Explaining Landscape Preference Heterogeneity Using Machine Learning-Based Survey Analysis. Landsc. Res. 2021, 46, 417–434. [Google Scholar] [CrossRef]
- Misthos, L.M.; Krassanakis, V.; Kesidis, A.L. Evaluating the Mountain Landscape: New Methods, Techniques & Technologies. In Proceedings of the Research and Actions for the Reborn of Mountainous and Remote Areas, Metsovo, Greece, 22–24 September 2022; pp. 779–791. (In Greek). [Google Scholar]
- Machado, P.; Romero, J.; Nadal, M.; Santos, A.; Correia, J.; Carballal, A. Acta Psychologica Computerized Measures of Visual Complexity ☆. Acta Psychol. 2015, 160, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Tzelepis, N.; Kaliakouda, A.; Krassanakis, V.; Misthos, L.M.; Nakos, B. Evaluating the Perceived Visual Complexity of Multidirectional Hill-Shading—Geodesy and Cartography—PAS Journals. Geod. Cartogr. 2020, 69, 161–172. [Google Scholar]
Perspective | Landscape-Based Activity | Meaning | Indicative Keywords | ‘Stimulus’ Type | ‘Sensor’ Type | Metric Type | Indicative Literature |
---|---|---|---|---|---|---|---|
egocentric | perception | how humans visually perceive a landscape (scene) during everyday observation | visual perception, visual attention, etc. | photos, simulations, and actual landscape | eye trackers (ET), fMRI, and EEG | objective ET-, fMRI-, and EEG-based indices | [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
evaluation | how humans rate a landscape (scene) or express their preferences about a landscape (scene) during everyday observation | visual preferences, visual quality, landscape aesthetics, etc. | photographs, stimulations, and actual landscape | questionnaire-based (for a wide array of utilized techniques see [78]) | subjective ratings or rankings(+ objective ET-, fMRI-, and EEG-based synthetic indicators) | [54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] | |
exocentric | characterization | how a certain geographic region is classified into different, distinct landscape areas based on its intrinsic properties | landscape change, LCA areas, LDUs, etc. | geospatial data: remote sensing (e.g., satellite) imagery, classified (LULC *1) maps, etc. | GIS-based | objective indicators based on landscape ecology indices, LCA typologies, etc. | [89,90,91,92,93,94,95,96,203,204,205,206,207,208] |
evaluation | how different, distinct landscape areas of a certain geographic region are rated based on their intrinsic (or extrinsic) *2 properties | landscape quality, landscape aesthetics, etc. | geospatial data: remote sensing (e.g., satellite) imagery, classified (LULC) maps, etc. (+photographs, stimulations, and actual landscape) | GIS-based (+questionnaire-based) | objective/subjective ratings or rankings based on the intrinsic (or extrinsic) quality of each landscape area | [219,220,221,222] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misthos, L.-M.; Krassanakis, V.; Merlemis, N.; Kesidis, A.L. Modeling the Visual Landscape: A Review on Approaches, Methods and Techniques. Sensors 2023, 23, 8135. https://doi.org/10.3390/s23198135
Misthos L-M, Krassanakis V, Merlemis N, Kesidis AL. Modeling the Visual Landscape: A Review on Approaches, Methods and Techniques. Sensors. 2023; 23(19):8135. https://doi.org/10.3390/s23198135
Chicago/Turabian StyleMisthos, Loukas-Moysis, Vassilios Krassanakis, Nikolaos Merlemis, and Anastasios L. Kesidis. 2023. "Modeling the Visual Landscape: A Review on Approaches, Methods and Techniques" Sensors 23, no. 19: 8135. https://doi.org/10.3390/s23198135
APA StyleMisthos, L. -M., Krassanakis, V., Merlemis, N., & Kesidis, A. L. (2023). Modeling the Visual Landscape: A Review on Approaches, Methods and Techniques. Sensors, 23(19), 8135. https://doi.org/10.3390/s23198135