A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement
<p>The structure of the bacterial cellulose electrode (<b>a</b>) The schematic diagram of the thin-film electrode structure (<b>b</b>) The bacterial cellulose electrodes (the two on either side) are pasted on the forehead beside a gel electrode patch (the middle one). (<b>c</b>) Layered structure of the electrode.</p> "> Figure 2
<p>Ag/AgCl conductive cloth fabricated by Chlorination is the Ag-coated conductive fabric. (<b>a</b>) The schematic drawing of the chlorination method. (<b>b</b>) Conductive fabric before and after chlorination (<b>c</b>) Electron micrograph (right) and energy spectrum (left) of the conductive cloth without chlorination. (<b>d</b>) Electron micrograph (right) and energy spectrum (left) of the conductive cloth with chlorination.</p> "> Figure 3
<p>Fabrication process of the bacterial cellulose electrode and the assembled electrode. (<b>a</b>) Paste the bacterial cellulose film on Ag/AgCl-coated conductive fabric. (<b>b</b>) Seam the lead wire on the electrode. (<b>c</b>) Tie the knot. (<b>d</b>) Tear off the non-woven protective film. (<b>e</b>) Dispense Eco-flex silicone prepolymer. (<b>f</b>) Heating and curing the Eco-flex. (<b>g</b>) Conductive fabric side of the electrode. (<b>h</b>) Bacterial cellulose side of the electrode.</p> "> Figure 4
<p>The electrodes’ positioning layout during impedance measurement and EEG signal measurement.</p> "> Figure 5
<p>The contact impedance of Ag/AgCl conductive fabric dry electrode without bacterial cellulose on it.</p> "> Figure 6
<p>The contact impedance test results on different subjects of bacterial cellulose electrodes and gel electrodes (<b>a</b>) Contact impedance and the error bars of different electrodes. (<b>b</b>) Normalized contact impedance and the error bars of different electrodes.</p> "> Figure 7
<p>The test method and results of contact impedance and phase for the bacterial cellulose electrodes and gel electrodes are compared. (<b>a</b>) The schematic diagram of the two-electrode method for contact impedance measurements. (<b>b</b>) The comparison of contact impedance at different frequencies. (<b>c</b>) The comparison of phase at different frequencies.</p> "> Figure 8
<p>The equivalent circuit test result for EEG electrodes. (<b>a</b>) Equivalent circuit model of a gel electrode and a bacterial cellulose electrode on the skin. (<b>b</b>) Nyquist plot of gel and bacterial cellulose electrodes on the head.</p> "> Figure 9
<p>Short-circuit noise of the bacterial cellulose electrode and gel electrode. (<b>a</b>) Noise measured by gel electrodes. (<b>b</b>) Number of noises measured by gel electrodes with different amplitudes. (<b>c</b>) PSD of noises measured by gel electrodes. (<b>d</b>) Noise measured by bacterial cellulose electrodes (water as electrolyte). (<b>e</b>) Number of noises measured by bacterial cellulose electrodes with different amplitudes (water as electrolyte). (<b>f</b>) PSD of noises measured by bacterial cellulose electrodes (water as electrolyte). (<b>g</b>) Noise measured with a bacterial cellulose electrode (physiological saline as electrolyte). (<b>h</b>) Number of noises measured with a bacterial cellulose electrode with different amplitudes (physiological saline as electrolyte). (<b>i</b>) PSD of noises measured with a bacterial cellulose electrode (physiological saline as electrolyte).</p> "> Figure 10
<p>EEG signals recorded with eyes closed. (<b>a</b>) EEG signal recorded by a bacterial cellulose electrode with drinking water as an electrolyte. (<b>b</b>) EEG signal recorded by bacterial cellulose electrode with physiological saline as electrolyte. (<b>c</b>) EEG signal recorded by a bacterial cellulose electrode with gel electrolyte. (<b>d</b>) PSD of the EEG signal recorded by a bacterial cellulose electrode (drinking water as electrolyte). (<b>e</b>) PSD of the EEG signal recorded by a bacterial cellulose electrode (physiological saline as electrolyte). (<b>f</b>) PSD of the EEG signal recorded by the gel electrode.</p> "> Figure 11
<p>EEG signals recorded with eyes opened. (<b>a</b>) EEG signal recorded by a bacterial cellulose electrode with drinking water as an electrolyte. (<b>b</b>) EEG signal recorded by bacterial cellulose electrode with physiological saline as electrolyte. (<b>c</b>) EEG signal recorded by a bacterial cellulose electrode with gel electrolyte. (<b>d</b>) PSD of the EEG signal recorded by a bacterial cellulose electrode (drinking water as electrolyte). (<b>e</b>) PSD of the EEG signal recorded by a bacterial cellulose electrode (physiological saline as electrolyte). (<b>f</b>) PSD of the EEG signal recorded by the gel electrode.</p> "> Figure 12
<p>EEG signal recording (right), PSD (middle), and coherence (left) are compared between the bacterial cellulose electrode and the gel electrode. (<b>a</b>–<b>c</b>) correspond to different subjects.</p> "> Figure 13
<p>Damage to the skin from bacterial cellulose electrodes and gel electrodes: the gel electrode left obvious red and swollen marks on the skin and caused obvious itching of the skin.</p> "> Figure 14
<p>Life span of the bacterial cellulose electrode for a single EEG acquisition.</p> ">
Abstract
:1. Introduction
- (1)
- A bacterial cellulose electrode structure is designed. This thin film electrode structure is completely flexible, retaining the water retention of the bacterial cellulose, which can be adsorbed on the skin, reducing the impedance between the skin and the conductive cloth electrode.
- (2)
- A method for using bacterial cellulose membranes in a process requiring heating is proposed.
- (3)
- The electrical properties of bacterial cellulose in collecting EEG signals are researched. The ability of bacterial cellulose electrodes to collect EEG signals is verified.
2. Materials and Methods
2.1. Design of the Electrode
2.2. Electrode Fabrication
3. Results
3.1. Contact Impedance on Different Subjects
3.2. Contact Impedance under Different Frequencies
3.3. Equivalent Circuit
3.4. Noise of the Electrodes
3.5. EEG Signal Measurement
3.6. The Signal Coherence of Different Electrodes
3.7. The Effect on the Skin
3.8. Life Span
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.S.; Islam, M.S.; Hussain, I.; Rahman, M.M.; Hossain, M.A. Explainable Artificial Intelligence Model for Stroke Prediction Using EEG Signal. Sensors 2022, 22, 9859. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics. IEEE Access 2020, 8, 213574–213586. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. Quantitative Evaluation of Task-Induced Neurological Outcome after Stroke. Brain Sci. 2021, 11, 900. [Google Scholar] [CrossRef]
- Hussain, I.; Hossai, M.A.; Jany, R.; Bari, M.A.; Uddin, M.; Kamal, A.R.M.; Ku, Y.; Kim, J.S. Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors 2022, 22, 3079. [Google Scholar] [CrossRef]
- Kwak, M.K.; Jeong, H.E.; Suh, K.Y. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv. Mater. 2011, 23, 3949–3953. [Google Scholar] [CrossRef]
- Lepola, P.; Myllymaa, S.; Töyräsa, J.; Muraja-Murro, A.; Mervaala, E.; Lappalainen, R.; Myllymaa, K. Department screen-printed EEG electrode set for emergency use. Sens. Actuators A Phys. 2014, 213, 19–26. [Google Scholar] [CrossRef]
- Ng, C.R.; Fiedler, P.; Kuhlmann, L.; Liley, D.; Vasconcelos, B.; Fonseca, C.; Tamburro, G.; Comani, S.; Lui, T.K.-Y.; Tse, C.-Y.; et al. Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps. Sensors 2022, 22, 8079. [Google Scholar] [CrossRef]
- Chi, Y.M.; Ng, P.; Cauwenberghs, G. Wireless noncontact ECG and EEG biopotential sensors. ACM Trans. Embed. Comput. Syst. 2013, 12, 103. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Y.; Li, H.; Wang, Y.; Liu, P.X.; Liu, R. Development and characterization of a dry ear-EEG sensor with a generic flexible earpiece. IEEE Trans. Instrum. Meas. 2023, 72, 4006212. [Google Scholar] [CrossRef]
- Abo-Zahhad, M.; Ahmed, S.M.; Abbas, S.N. State-of-the-art methods and future perspectives for personal recognition based on electroencephalogram signals. Biom. IET 2015, 4, 179–190. [Google Scholar] [CrossRef]
- Prance, R.J.; Debray, A.; Clark, T.D.; Prance, H.; Nock, M.; Harland, C.J.; Clippingdale, A.J. An ultra-low-noise electrical-potential probe for human-body scanning. Meas. Sci. Technol. 2000, 11, 291. [Google Scholar] [CrossRef]
- Damalerio, R.B.; Lim, R.; Gao, Y.; Zhang, T.-T.; Cheng, M.-Y. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition. Sensors 2023, 23, 4453. [Google Scholar] [CrossRef]
- Forvi, E.; Bedoni, M.; Carabalona, R.; Soncini, M.; Mazzoleni, P.; Rizzo, F.; O’Mahony, C.; Morasso, C.; Cassarà, D.G.; Gramatica, F. Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. Sens. Actuators A Phys. 2012, 180, 177–186. [Google Scholar] [CrossRef]
- Khosla, A.; Gray, B. Preparation, characterization and micro molding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer. Mater. Lett. 2009, 63, 1203–1206. [Google Scholar] [CrossRef]
- Salvo, P.; Raedt, R.; Carrette, E.; Schaubroeck, D.; Vanfleteren, J.; Cardon, L. A 3D printed dry electrode for ECG/EEG recording. Sens. Actuators A Phys. 2012, 174, 96–102. [Google Scholar] [CrossRef]
- Ng, W.; Seet, H.; Lee, K.; Ning, N.; Tai, W.; Sutedja, M.; Fuh, J.; Li, X. Micro-spike EEG electrode and the vacuum-casting technology for mass production. Sens. Actuators A Phys. 2009, 209, 4434–4438. [Google Scholar] [CrossRef]
- Myllymaa, S.; Pirinen, S.; Myllymaa, K.; Suvanto, M.; Pakkanen, T.A.; Pakkanen, T.T.; Lappalainen, R. Improving electrochemical performance of flexible thin film electrodes with micropillar array structures. Meas. Sci. Technol. 2012, 23, 125701. [Google Scholar] [CrossRef]
- Iguchi, M.; Yamanaka, S.; Budhiono, A. Bacterial cellulose-a masterpiece of nature arts. J. Mater. Sci. 2000, 35, 261–270. [Google Scholar] [CrossRef]
- Almeida, A.P.; Saraiva, J.N.; Cavaco, G.; Portela, R.P.; Leal, C.R.; Sobral, R.G.; Almeida, P.L. Crosslinked bacterial cellulose hydrogels for biomedical applications. Eur. Polym. J. 2022, 177, 111438. [Google Scholar] [CrossRef]
- Hu, W.; Chen, S.; Zhou, B.; Liu, L.; Ding, B.; Wang, H. Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane. Sens. Actuators B Chem. 2011, 159, 301–306. [Google Scholar] [CrossRef]
- Costa, L.M.M.; de Olyveira, G.M.; Basmaji, P.; Filho, L.X. Bacterial Cellulose Towards Functional Medical Materials. J. Biomater. Tissue Eng. 2012, 2, 185–196. [Google Scholar] [CrossRef]
- Xu, H.P.; Zhang, X.T. Textile-structured electrodes for electrocardiogram. Text. Prog. 2008, 40, 183–213. [Google Scholar] [CrossRef]
- Li, Y.; Qing, S.; Zhou, J.; Yang, G. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials. Carbohydr. Polym. 2014, 103, 496–501. [Google Scholar] [CrossRef]
- Pacheco, G.; De Mello, C.V.; Chiari-Andréo, B.G.; Isaac, V.L.B.; Ribeiro, S.J.L.; Pecoraro, É.; Trovatti, E. Bacterial cellulose skin masks-Properties and sensory tests. J. Cosmet. Dermatol. 2018, 15, 840–847. [Google Scholar] [CrossRef]
- Gao, K.P.; Yang, H.J. Soft pin-shaped dry electrode with bristles for EEG signal measurements. Sens. Actuators A Phys. 2018, 283, 348–361. [Google Scholar] [CrossRef]
- Gao, K.P.; Shen, G.C.; Zhao, N.; Jiang, C.P.; Yan, B.; Liu, J.Q. Wearable multifunction sensor for the detection of forehead EEG signal and sweat rate on skin simultaneously. IEEE Sens. J. 2020, 20, 10393–10404. [Google Scholar] [CrossRef]
- Peng, H.-L.; Liu, J.-Q.; Tian, H.-C.; Dong, Y.-Z.; Yang, B.; Chen, X.; Yang, C.-S. A novel passive electrode base on porous Ti for EEG recording. Sens. Actuators B Chem. 2016, 226, 349–356. [Google Scholar] [CrossRef]
- Argel, S.; Castaño, M.; Jimenez, D.E.; Rodríguez, S.; Vallejo, M.J.; Castro, C.I.; Osorio, M.A. Assessment of Bacterial Nanocellulose Loaded with Acetylsalicylic Acid or Povidone-Iodine as Bioactive Dressings for Skin and Soft Tissue Infections. Pharmaceutics 2022, 14, 1661. [Google Scholar] [CrossRef]
- Alavi, M.; Zorab, M.M.; Ashengroph, M.; Aljelehawy, Q.H.A.; Kahrizi, D. Antibacterial and wound healing applications of curcumin in micro and nano-scaffolds based on chitosan, cellulose, and collagen. Cell. Mol. Biol. 2022, 67, 9–14. [Google Scholar] [CrossRef]
- Stauffer, F.; Thielen, M.; Sauter, C.; Chardonnens, S.; Bachmann, S.; Tybrandt, K.; Peters, C.; Hierold, C.; Vörös, J. Skin Conformal Polymer Electrodes for Clinical ECG and EEG Recordings. Adv. Health Mater. 2018, 7, 1700994. [Google Scholar] [CrossRef]
- Jakab, K.; Csipor, J.; Ulbert, I.; Keresztes, Z.; Mészáros, G.; Márton, G. EEG Sensor System Development Consisting of Solid Polyvinyl Alcohol-Glycerol-NaCl Contact Gel and 3D-Printed, Silver-Coated Polylactic Acid Electrode for Potential Brain-Computer Interface Use. Mater. Today Chem. 2022, 26, 10108. [Google Scholar] [CrossRef]
- Ferrari, L.M.; Ismailov, U.; Badier, J.M.; Greco, F.; Ismailova, E. Conducting Polymer Tattoo Electrodes in Clinical Electro-and Magneto-Encephalography. NPJ Flex. Electron. 2020, 4, 4. [Google Scholar] [CrossRef]
Item | n | |||||||
---|---|---|---|---|---|---|---|---|
Unit | Nu | |||||||
Gel electrode | 89.24 | 1.65 × 10−8 | 1.11 × 10−6 | 0.757 | 4508 | 1.83 × 10−7 | 724.1 | 157.3 |
Bacterial cellulose electrode (water) | 10.22 | 8.89 × 10−8 | 10.79 × 10−6 | 0.769 | 5480 | 2.69 × 10−7 | 693.4 | 208.9 |
Bacterial cellulose electrode (saline) | 18.2 | 1.0 × 10−7 | 1.52 × 10−6 | 0.780 | 2927 | 3.14 × 10−7 | 420 | 125.6 |
Electrode Type | Contact Impedance | Adhesion | Reusability |
---|---|---|---|
Rubber dry electrode [30] | 50 kΩ·cm2 | EEG hat or bandage needed | Yes |
Conductive fabric electrode [26] | 200 kΩ·cm2 | Bndage needed | Yes |
Gel electrode [31] | 20 kΩ·cm2 | Etra tape needed | No |
Temporary tattoo electrode [32] | 17 × 103 kΩ·cm2 | Yes | No |
Bacterial cellulose electrode | 19 kΩ·cm2 | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Wu, N.; Ji, B.; Liu, J. A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement. Sensors 2023, 23, 7887. https://doi.org/10.3390/s23187887
Gao K, Wu N, Ji B, Liu J. A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement. Sensors. 2023; 23(18):7887. https://doi.org/10.3390/s23187887
Chicago/Turabian StyleGao, Kunpeng, Nailong Wu, Bowen Ji, and Jingquan Liu. 2023. "A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement" Sensors 23, no. 18: 7887. https://doi.org/10.3390/s23187887
APA StyleGao, K., Wu, N., Ji, B., & Liu, J. (2023). A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement. Sensors, 23(18), 7887. https://doi.org/10.3390/s23187887