Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages
<p>Methodology of EEG-based sleep stages classification using a machine-learning approach.</p> "> Figure 2
<p>Results from EEG spectral power features during sleep stages W, N1, N2, N-3, and R. The bar chart describes the relative mean power of the EEG waves, and the vertical error bar (black color) is the 95% CI. (<b>a</b>) Alpha relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, and global. (<b>b</b>) Beta relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, and global. (<b>c</b>) Theta relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, and global. (<b>d</b>) Delta relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, and global. (<b>e</b>) Gamma relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, and global. Global indicates the average measures of features of the frontal, central, and occipital lobes. The horizontal bars (brown color) are the outcomes of the hypothesis tests and indicate significant differences (<span class="html-italic">p</span> < 0.05) in EEG features among the sleep stages.</p> "> Figure 3
<p>Results from DAR, DTR, and DTABR during sleep stages W, N1, N2, N-3, and R. The bar chart describes the relative mean power of the EEG waves and the vertical error bar (black color) is the 95% CI. Global indicates the average measures of features of the frontal, central, and occipital lobes. The horizontal bars (brown color) are the outcomes of the hypothesis tests and indicate significant differences (<span class="html-italic">p</span> < 0.05) in EEG features among the sleep stages.</p> "> Figure 4
<p>Performance of the three machine-learning models (C5.0, Neural Network, and CHAID Models) to classify the sleep stages W, N1, N2, N-3, and R using training and testing datasets of EEG features.</p> ">
Abstract
:1. Introduction
- EEG biomarkers, consisting of frequency spectral measures for sleep stages, have been identified using statistical analysis.
- Machine-learning models have been developed to classify the neurological states in different sleep stages.
2. Materials and Methods
2.1. Dataset
2.2. Pre-Processing
2.3. Feature Extraction
2.3.1. EEG Frequency-Domain Features
2.3.2. DAR, DTR, and DTABR
2.4. Features Selection
2.5. Classification Algorithms
2.5.1. The Neural Network Model
2.5.2. Chi-Squared Automatic Interaction Detector (CHAID) Model
2.5.3. C5.0 Model
2.6. Data Analysis
3. Results
3.1. Statistical Analysis
3.1.1. EEG Biomarkers for Sleep Stages
3.1.2. Association of DAR, DTR, and DTABR with Sleep Stages
3.2. Machine Learning Analysis
Multi-Class Classification of Sleep Stages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.; Vaughn, B.V. The Aasm Manual for the Scoring of Sleep and Associated Events. In Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2012. [Google Scholar]
- Carskadon, M.A.; Dement, W.C. Normal Human Sleep: An Overview. Princ. Pract. Sleep Med. 2005, 4, 13–23. [Google Scholar]
- Park, S.J.; Hussain, I.; Hong, S.; Kim, D.; Park, H.; Benjamin, H.C.M. Real-Time Gait Monitoring System for Consumer Stroke Prediction Service. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020. [Google Scholar]
- Park, H.; Hong, S.; Hussain, I.; Kim, D.; Seo, Y.; Park, S.J. Gait Monitoring System for Stroke Prediction of Aging Adults. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DC, USA, 24–28 July 2019. [Google Scholar]
- Hong, S.; Kim, D.; Park, H.; Seo, Y.; Iqram, H.; Park, S. Gait Feature Vectors for Post-Stroke Prediction Using Wearable Sensor. Sci. Emot. Sensib. 2019, 22, 55–64. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, S.; Kim, D.; Hussain, I.; Seo, Y. Intelligent in-Car Health Monitoring System for Elderly Drivers in Connected Car. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), Florence, Italy, 26–28 August 2018. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I. Knowledge Based Health Monitoring During Driving. In Proceedings of the International Conference on Human-Computer Interaction (HCI), Las Vegas, NV, USA, 15–18 July 2018. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I.; Won, S.T.; Jung, J. Real-Time Medical Examination System; Korean Intellectual Property Office: Daejeon, Korea, 2019. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I.; Hur, J.H.; Jin, W. Development of a Real-Time Stroke Detection System for Elderly Drivers Using Quad-Chamber Air Cushion and Iot Devices. In Proceedings of the WCX World Congress Experience, Detroit, MI, USA, 10–12 April 2018. [Google Scholar]
- Le, N.Q.K.; Hung, T.N.K.; Do, D.T.; Lam, L.H.T.; Dang, L.H.; Huynh, T.T. Radiomics-Based Machine Learning Model for Efficiently Classifying Transcriptome Subtypes in Glioblastoma Patients from Mri. Comput. Biol. Med. 2021, 132, 104320. [Google Scholar] [CrossRef]
- Kim, D.; Hong, S.; Hussain, I.; Seo, Y.; Park, S.J. Analysis of Bio-Signal Data of Stroke Patients and Normal Elderly People for Real-Time Monitoring. In Proceedings of the 20th Congress of the International Ergonomics Association, Florence, Italy, 26–30 August 2019. [Google Scholar]
- Hussain, I.; Park, S.J. Healthsos: Real-Time Health Monitoring System for Stroke Prognostics. IEEE Access 2020, 8, 213574–213586. [Google Scholar] [CrossRef]
- Hussain, I.; Young, S.; Kim, C.; Benjamin, H.; Park, S. Quantifying Physiological Biomarkers of a Microwave Brain Stimulation Device. Sensors 2021, 21, 1896. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, S.; Kim, D.; Hussain, I.; Seo, Y.; Kim, M.K. Physiological Evaluation of a Non-Invasive Wearable Vagus Nerve Stimulation (Vns) Device. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DC, USA, 24–28 July 2019. [Google Scholar]
- Hussain, I.; Park, S.J. Big-Ecg: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access 2021, 9, 123146–123164. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, S.; Hussain, I.; Kim, D.; Seo, Y. Wearable Sleep Monitoring System Using Air-Mattress and Microwave-Radar Sensor: A Study; Korean Society of Emotion and Sensibility (KOSES): Daejeon, Korea, 2019. [Google Scholar]
- Park, S.; Hong, S.; Kim, D.; Yu, J.; Hussain, I.; Park, H.; Benjamin, H. Development of intelligent stroke monitoring system for the elderly during sleeping. Sleep Med. 2019, 64, S294. [Google Scholar] [CrossRef]
- Park, S.J.; Hussain, I.; Kyoung, B. Wearable Sleep Monitoring System and Method; Korean Intellectual Property Office: Daejeon, Korea, 2021. [Google Scholar]
- Park, S.J.; Hussain, I. Monitoring System for Stroke During Sleep; Korean Intellectual Property Office: Daejeon, Korea, 2020. [Google Scholar]
- Boostani, R.; Karimzadeh, F.; Nami, M. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Programs Biomed. 2016, 140, 77–91. [Google Scholar] [CrossRef]
- Alvarez-Estevez, D.; Rijsman, R.M. Haaglanden Medisch Centrum Sleep Staging Database (Version 1.0.1); PhysioNet, 2021; Available online: https://physionet.org/ (accessed on 22 March 2022).
- Alvarez-Estevez, D.; Rijsman, R.M. Inter-Database Validation of a Deep Learning Approach for Automatic Sleep Scoring. PLoS ONE 2021, 16, e0256111. [Google Scholar] [CrossRef]
- Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.S.; Schlink, B.R.; Hairston, W.D.; König, P.; Ferris, D.P. Induction and Separation of Motion Artifacts in EEG Data Using a Mobile Phantom Head Device. J. Neural Eng. 2016, 13, 036014. [Google Scholar] [CrossRef] [PubMed]
- Sanei, S.; Chambers, J.A. EEG Signal Processing and Machine Learning; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Hussain, I. Prediction of Stroke-Impaired Neurological, Cardiac, and Neuromuscular Changes Using Physiological Signals and Machine-Learning Approach. Ph.D. Thesis, University of Science and Technology, Daejeon, Korea, 2022. [Google Scholar]
- Welch, P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Young, S.; Park, S.-J. Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System. Sensors 2021, 21, 6985. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Park, S.-J. Quantitative Evaluation of Task-Induced Neurological Outcome after Stroke. Brain Sci. 2021, 11, 900. [Google Scholar] [CrossRef] [PubMed]
- Snecdecor, G.W.; Cochran, W.G. Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- King, G.; Zeng, L. Logistic Regression in Rare Events Data. Political Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Kass, G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. J. R. Stat. Soc. 1980, 29, 119–127. [Google Scholar] [CrossRef]
- Ross, Q.J. Data Mining Tools See5 and C5.0. Available online: www.rulequest.com/see5-info.html (accessed on 12 March 2022).
- Johnson, L.C. A Psychophysiology for All States. Psychophysiology 1970, 6, 501–516. [Google Scholar] [CrossRef]
- Cantero, J.L.; Atienza, M.; Salas, R.M. Human alpha oscillations in wakefulness, drowsiness period, and REM sleep: Different electroencephalographic phenomena within the alpha band. Neurophysiol. Clin. Neurophysiol. 2002, 32, 54–71. [Google Scholar] [CrossRef]
- Simon, C.W.; Emmons, W.H. EEG, Consciousness, and Sleep. Science 1956, 124, 1066–1069. [Google Scholar] [CrossRef] [Green Version]
- Anderer, P.; Gruber, G.; Parapatics, S.; Woertz, M.; Miazhynskaia, T.; Klosch, G.; Saletu, B.; Zeitlhofer, J.; Barbanoj, M.J.; Danker-Hopfe, H.; et al. An E-Health Solution for Automatic Sleep Classification According to Rechtschaffen and Kales: Validation Study of the Somnolyzer 24 X 7 Utilizing the Siesta Database. Neuropsychobiology 2005, 51, 115–133. [Google Scholar] [CrossRef]
- Himanen, S.-L.; Hasan, J. Limitations of Rechtschaffen and Kales. Sleep Med. Rev. 2000, 4, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Giannakeas, N.; Tzimourta, K.D.; Tsilimbaris, A.; Tzioukalia, K.; Tzallas, A.T.; Tsipouras, M.G.; Astrakas, L.G. EEG-Based Automatic Sleep Stage Classification. Biomed. J. Sci. Tech. Res. 2018, 1, 6. [Google Scholar] [CrossRef]
- Ghasemzadeh, P.; Kalbkhani, H.; Shayesteh, M.G. Sleep stages classification from EEG signal based on Stockwell transform. IET Signal Process. 2019, 13, 242–252. [Google Scholar] [CrossRef]
- Tripathy, R.K.; Ghosh, S.K.; Gajbhiye, P.; Acharya, U.R. Development of Automated Sleep Stage Classification System Using Multivariate Projection-Based Fixed Boundary Empirical Wavelet Transform and Entropy Features Extracted from Multichannel EEG Signals. Entropy 2020, 22, 1141. [Google Scholar] [CrossRef]
- Widasari, E.R.; Tanno, K.; Tamura, H. Automatic Sleep Disorders Classification Using Ensemble of Bagged Tree Based on Sleep Quality Features. Electronics 2020, 9, 512. [Google Scholar] [CrossRef] [Green Version]
- Wang, I.N.; Lee, C.H.; Kim, H.J.; Kim, H.; Kim, D.J. An Ensemble Deep Learning Approach for Sleep Stage Classification Via Single-Channel EEG and EOG. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 19–21 October 2020. [Google Scholar]
- Sharma, M.; Tiwari, J.; Acharya, U. Automatic Sleep-Stage Scoring in Healthy and Sleep Disorder Patients Using Optimal Wavelet Filter Bank Technique with EEG Signals. Int. J. Environ. Res. Public Health 2021, 18, 3087. [Google Scholar] [CrossRef]
EEG Channel | EEG Spectral Waves | EEG Feature | Number of Features |
---|---|---|---|
F4, C4, and O2 | δ, θ, α, β, and γ | Mean Power | 15 |
F4, C4, and O2 | δ, θ, α, β, and γ | Median Frequency | 15 |
F4, C4, and O2 | δ, θ, α, β, and γ | Mean Frequency | 15 |
F4, C4, and O2 | δ, θ, α, β, and γ | Spectral Edge | 15 |
F4, C4, and O2 | δ, θ, α, β, and γ | Peak Frequency | 15 |
Global | δ, θ, α, β, and γ | Mean Power | 5 |
F4, C4, and O2 | DAR (δ/α) and DTR (δ/θ) | Mean Power | 6 |
F4, C4, and O2 | - | Total Mean Power | 3 |
EEG Feature | N1 | N2 | N3 | R | W | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | ||
Frontal Lobe | Alpha | 0.102 | 0.056 | 0.082 | 0.042 | 0.048 | 0.028 | 0.089 | 0.042 | 0.112 | 0.079 |
Beta | 0.113 | 0.070 | 0.070 | 0.045 | 0.033 | 0.028 | 0.088 | 0.051 | 0.140 | 0.092 | |
Theta | 0.137 | 0.064 | 0.130 | 0.051 | 0.093 | 0.037 | 0.147 | 0.058 | 0.125 | 0.078 | |
Delta | 0.613 | 0.186 | 0.694 | 0.144 | 0.813 | 0.108 | 0.648 | 0.148 | 0.570 | 0.234 | |
Gamma | 0.036 | 0.061 | 0.024 | 0.070 | 0.013 | 0.061 | 0.028 | 0.060 | 0.053 | 0.071 | |
Central Lobe | Alpha | 0.115 | 0.062 | 0.092 | 0.045 | 0.053 | 0.032 | 0.102 | 0.044 | 0.137 | 0.087 |
Beta | 0.126 | 0.075 | 0.083 | 0.048 | 0.040 | 0.033 | 0.100 | 0.050 | 0.169 | 0.097 | |
Theta | 0.151 | 0.069 | 0.147 | 0.053 | 0.104 | 0.043 | 0.169 | 0.060 | 0.141 | 0.084 | |
Delta | 3.922 | 27.494 | 1.572 | 19.725 | 1.954 | 10.219 | 1.982 | 25.349 | 4.922 | 32.353 | |
Gamma | 0.048 | 0.092 | 0.037 | 0.101 | 0.021 | 0.085 | 0.043 | 0.101 | 0.067 | 0.092 | |
Occipital Lobe | Alpha | 0.112 | 0.064 | 0.096 | 0.046 | 0.057 | 0.032 | 0.108 | 0.048 | 0.142 | 0.097 |
Beta | 0.117 | 0.074 | 0.086 | 0.050 | 0.043 | 0.033 | 0.102 | 0.048 | 0.161 | 0.101 | |
Theta | 0.144 | 0.071 | 0.153 | 0.064 | 0.116 | 0.052 | 0.156 | 0.060 | 0.137 | 0.086 | |
Delta | 0.580 | 0.207 | 0.620 | 0.170 | 0.759 | 0.136 | 0.590 | 0.156 | 0.499 | 0.261 | |
Gamma | 0.047 | 0.091 | 0.046 | 0.112 | 0.025 | 0.084 | 0.045 | 0.100 | 0.061 | 0.089 | |
Global | Alpha | 0.109 | 0.058 | 0.090 | 0.041 | 0.052 | 0.028 | 0.100 | 0.041 | 0.130 | 0.084 |
Beta | 0.119 | 0.070 | 0.080 | 0.045 | 0.039 | 0.029 | 0.097 | 0.046 | 0.156 | 0.090 | |
Theta | 0.144 | 0.064 | 0.143 | 0.050 | 0.104 | 0.040 | 0.157 | 0.054 | 0.134 | 0.079 | |
Delta | 1.701 | 9.200 | 0.960 | 6.591 | 1.175 | 3.422 | 1.071 | 8.468 | 1.994 | 10.825 | |
Gamma | 0.043 | 0.071 | 0.036 | 0.084 | 0.020 | 0.068 | 0.038 | 0.076 | 0.060 | 0.075 |
EEG Feature | N1 | N2 | N3 | R | W | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | ||
Global | DAR | 296.0 | 3326.7 | 103.0 | 1917.7 | 73.6 | 723.5 | 180.5 | 3406.5 | 292.8 | 2914.9 |
DTR | 89.8 | 824.5 | 31.2 | 486.4 | 24.3 | 195.8 | 48.9 | 790.4 | 96.6 | 748.6 | |
DTABR | 166.0 | 1912.7 | 62.5 | 1219.8 | 48.6 | 440.1 | 105.1 | 1950.1 | 153.8 | 1678.6 |
C5.0 | Prediction | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | REM | Wake | N1 | N2 | N3 | REM | Wake | ||
Actual | N1 | 5760 | 1529 | 78 | 705 | 1451 | 748 | 632 | 42 | 383 | 585 |
N2 | 837 | 27,581 | 1849 | 842 | 481 | 493 | 5713 | 858 | 548 | 226 | |
N3 | 88 | 2262 | 14,656 | 66 | 63 | 38 | 976 | 3083 | 38 | 20 | |
REM | 665 | 1110 | 103 | 11,046 | 233 | 400 | 676 | 55 | 2060 | 117 | |
Wake | 622 | 443 | 37 | 152 | 14,192 | 391 | 237 | 25 | 86 | 3170 |
Neural Network | Prediction | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | REM | Wake | N1 | N2 | N3 | REM | Wake | ||
Actual | N1 | 2197 | 2634 | 88 | 1948 | 2656 | 550 | 666 | 29 | 470 | 675 |
N2 | 845 | 24,746 | 3078 | 1883 | 1038 | 196 | 6149 | 753 | 483 | 257 | |
N3 | 22 | 4250 | 12,647 | 42 | 174 | 7 | 1039 | 3066 | 13 | 30 | |
REM | 699 | 2504 | 86 | 9331 | 537 | 176 | 624 | 21 | 2372 | 115 | |
Wake | 980 | 796 | 68 | 318 | 13,284 | 243 | 212 | 23 | 78 | 3353 |
CHAID | Prediction | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | REM | Wake | N1 | N2 | N3 | REM | Wake | ||
Actual | N1 | 2109 | 2946 | 270 | 1817 | 2381 | 541 | 741 | 54 | 451 | 603 |
N2 | 1392 | 21,380 | 4679 | 3175 | 964 | 338 | 5305 | 1121 | 834 | 240 | |
N3 | 80 | 5835 | 10,913 | 147 | 160 | 16 | 1418 | 2659 | 31 | 31 | |
REM | 1366 | 4547 | 422 | 6210 | 612 | 354 | 1152 | 103 | 1560 | 139 | |
Wake | 1970 | 1697 | 199 | 479 | 11,101 | 535 | 407 | 66 | 124 | 2777 |
C5.0 | Training (Average Accuracy = 94%) | Testing (Average Accuracy = 87%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Precision | Negative Predictive Value | Accuracy | Sensitivity | Specificity | Precision | Negative Predictive Value | |
N1 | 0.93 | 0.60 | 0.971 | 0.72 | 0.95 | 0.86 | 0.31 | 0.931 | 0.36 | 0.92 |
N2 | 0.89 | 0.87 | 0.903 | 0.84 | 0.93 | 0.78 | 0.73 | 0.817 | 0.69 | 0.84 |
N3 | 0.95 | 0.86 | 0.970 | 0.88 | 0.96 | 0.91 | 0.74 | 0.944 | 0.76 | 0.94 |
R | 0.96 | 0.84 | 0.976 | 0.86 | 0.97 | 0.89 | 0.62 | 0.942 | 0.66 | 0.93 |
W | 0.96 | 0.92 | 0.969 | 0.86 | 0.98 | 0.92 | 0.81 | 0.946 | 0.77 | 0.96 |
Neural Network | Training (Average Accuracy = 89%) | Testing (Average Accuracy = 89%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Precision | Negative Predictive Value | Accuracy | Sensitivity | Specificity | Precision | Negative Predictive Value | |
N1 | 0.89 | 0.23 | 0.97 | 0.46 | 0.91 | 0.89 | 0.23 | 0.97 | 0.47 | 0.91 |
N2 | 0.80 | 0.78 | 0.82 | 0.71 | 0.87 | 0.80 | 0.78 | 0.82 | 0.71 | 0.87 |
N3 | 0.91 | 0.74 | 0.95 | 0.79 | 0.94 | 0.91 | 0.74 | 0.95 | 0.79 | 0.94 |
R | 0.91 | 0.71 | 0.94 | 0.69 | 0.95 | 0.91 | 0.72 | 0.94 | 0.69 | 0.95 |
W | 0.92 | 0.86 | 0.94 | 0.75 | 0.97 | 0.92 | 0.86 | 0.94 | 0.76 | 0.97 |
CHAID | Training (Average Accuracy = 84%) | Testing (Average Accuracy = 84%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Precision | Negative Predictive Value | Accuracy | Sensitivity | Specificity | Precision | Negative Predictive Value | |
N1 | 0.86 | 0.22 | 0.94 | 0.30 | 0.91 | 0.86 | 0.23 | 0.94 | 0.30 | 0.91 |
N2 | 0.71 | 0.68 | 0.73 | 0.59 | 0.80 | 0.71 | 0.68 | 0.73 | 0.59 | 0.80 |
N3 | 0.86 | 0.64 | 0.92 | 0.66 | 0.91 | 0.87 | 0.64 | 0.92 | 0.66 | 0.91 |
R | 0.86 | 0.47 | 0.92 | 0.53 | 0.91 | 0.85 | 0.47 | 0.92 | 0.52 | 0.91 |
W | 0.90 | 0.72 | 0.94 | 0.73 | 0.94 | 0.90 | 0.71 | 0.94 | 0.73 | 0.94 |
Study | Year | Study Subject | Dataset (Year)/Signal | Class | Algorithm | Accuracy % |
---|---|---|---|---|---|---|
Tzimourta et al. [40] | 2018 | 100 subjects | ISRUC-Sleep dataset (2009–2013)/EEG | Five-class {W, N1, N2, N3, and REM} | Random Forest | 75.29 |
Kalbkhani et al. [41] | 2018 | 100 subjects | ISRUC-Sleep dataset (2009–2013)/EEG | Five-class {W, N1, N2, N3, and REM} | SVM | 82.33 |
Tripathi et al. [42] | 2020 | 25 subjects | Cyclic Alternating Pattern (CAP) (2001)/EEG | Six-class {W, S1, S2, S3, S4, and REM} | Hybrid Classifier | 71.68 |
Widasari et al. [43] | 2020 | 51 subjects | Cyclic Alternating Pattern (CAP) (2001)/EEG | Four-class {W, Light sleep (S1 + S2), Deep sleep (S3 + S4), and REM} | Ensemble of bagged tree (EBT) | 86.26 |
Wang et al. [44] | 2020 | 157 subjects | Sleep-EDF Expanded (Sleep-EDFX) (2000)/EEG and EOG | Five-class {W, N1, N2, N3, and REM} | Ensembles of EEGNet-BiLSTM | 82 |
Sharma et al. [45] | 2021 | 80 subjects | Cyclic Alternating Pattern (CAP) (2001)/EEG | Six-class {W, S1, S2, S3, S4, and REM} | Ensemble of Bagged Tree (EBT) | 85.3 |
Proposed work | 2022 | 157 subjects | HMC-Haaglanden Medisch Centrum (2021)/EEG | Five-class {W, N1, N2, N3, and REM} | C5.0, Neural Network, and CHAID | C5.0 (91%), Neural Network (92%), and CHAID (84%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, I.; Hossain, M.A.; Jany, R.; Bari, M.A.; Uddin, M.; Kamal, A.R.M.; Ku, Y.; Kim, J.-S. Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors 2022, 22, 3079. https://doi.org/10.3390/s22083079
Hussain I, Hossain MA, Jany R, Bari MA, Uddin M, Kamal ARM, Ku Y, Kim J-S. Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors. 2022; 22(8):3079. https://doi.org/10.3390/s22083079
Chicago/Turabian StyleHussain, Iqram, Md Azam Hossain, Rafsan Jany, Md Abdul Bari, Musfik Uddin, Abu Raihan Mostafa Kamal, Yunseo Ku, and Jik-Soo Kim. 2022. "Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages" Sensors 22, no. 8: 3079. https://doi.org/10.3390/s22083079
APA StyleHussain, I., Hossain, M. A., Jany, R., Bari, M. A., Uddin, M., Kamal, A. R. M., Ku, Y., & Kim, J. -S. (2022). Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors, 22(8), 3079. https://doi.org/10.3390/s22083079