Low-Pass Filters for a Temperature Drift Correction Method for Electromagnetic Induction Systems
<p>(<b>a</b>) Photo of the modified electromagnetic induction (EMI) instrument; (<b>b</b>) Representation of the measurement system consisting of a generator unit (Gen), a transmitter coil (Tx) and 3 receiver coils (Rx<sub>1</sub>, Rx<sub>2</sub> and Rx<sub>3</sub>). The data acquisition unit (DAQ) consists of an analog to digital converter (ADC), a microcontroller (<math display="inline"><semantics> <mi>μ</mi> </semantics></math>C), a mini-computer (mc) and eight temperature sensors spread across the device. All components are enclosed in a polyvinyl chloride (PVC) casing. Temperature sensors 2 and 6 measure the PVC temperature, sensors 3, 4 and 5 measure the air temperature, sensor 7 measures the heat sink temperature, sensor 8 measures the Tx coil temperature and sensor 9 measures the printed circuit board (PCB) temperature of the Tx. The system has a length of 243 cm and a width of 16 cm and is powered by a 12 V battery.</p> "> Figure 2
<p>Phase drift model with pre-selected measured temperatures <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> </semantics></math>, which serve as input for the low-pass filters (LPF). The outputs of <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>P</mi> <msub> <mi>F</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>P</mi> <msub> <mi>F</mi> <mn>2</mn> </msub> </mrow> </semantics></math> are the modelled temperatures <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>o</mi> <mi>d</mi> <mn>1</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>o</mi> <mi>d</mi> <mn>2</mn> </mrow> </msub> </semantics></math>, which are converted to modelled phases <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Φ</mi> <mrow> <mi>m</mi> <mi>o</mi> <mi>d</mi> <mn>1</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Φ</mi> <mrow> <mi>m</mi> <mi>o</mi> <mi>d</mi> <mn>2</mn> </mrow> </msub> </semantics></math> respectively by cubic spline interpolation using a lookup table (LuT).</p> "> Figure 3
<p>Root mean square error (RMSE) between modelled and measured temperatures to identify representative temperature sensors suitable for drift correction. The colour bar shows the RMSE between modelled and measured temperatures (in Kelvin). An error value of 0 indicates that one sensor can perfectly replace another temperature sensor.</p> "> Figure 4
<p>Plot of the residual eigenvalues (1-<math display="inline"><semantics> <msub> <mi>E</mi> <mrow> <mi>v</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mn>1</mn> <mi>N</mi> </mrow> </msub> </semantics></math>) for all datasets obtained from principal component analysis (PCA) on time series of temperature sensors 3 and 9. The red bars represent datasets recorded with uniform temperature distributions and the blue plots represent datasets recorded with non-uniform temperature distributions.</p> "> Figure 5
<p>Plot of the correlation between the calibration parameters <math display="inline"><semantics> <msub> <mi>G</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>G</mi> <mn>2</mn> </msub> </semantics></math> showing all parameter combinations for errors (<math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> </mrow> </semantics></math>) less than 1 mSm<sup>−1</sup>, obtained from fitting dataset #10 with the initial boundaries.</p> "> Figure 6
<p>Time series variation of measured apparent electrical conductivity (ECa<sub>ms</sub>) (red circle) and modelled apparent electrical conductivity (ECa<sub>mod</sub>) (black lines) for 15 datasets.</p> "> Figure 7
<p>Root mean square errors (RMSE) from fitting with temperature sensors 3 and 9 using calibration strategies A–C (black, red and blue bars, respectively). The black bars show the results of drift correction with calibration parameters obtained from fitting individual measurements. The red bars show the correction with the calibration parameters obtained from simultaneously fitting all datasets. The blue bars are the correction results with parameters obtained from simultaneous fitting with 1 LPF and the mean of temperature sensors 3 and 9.</p> "> Figure 8
<p>Comparison of modelled apparent electrical conductivity (ECa<sub>mod</sub>), denoted as black lines, with measured apparent electrical conductivity (ECa<sub>ms</sub>), denoted as red circles, as a function of the mean of temperatures 3 and 9 for 15 datasets, using calibration parameters obtained from fitting type A. All ECa values are mean-centered and represented as ECa changes.</p> "> Figure 9
<p>Comparison of modelled apparent electrical conductivity (ECa<sub>mod</sub>), denoted as black lines, with measured apparent electrical conductivity (ECa<sub>ms</sub>), denoted as red circles, as a function of the mean of temperatures 3 and 9 for 15 datasets, using calibration parameters obtained from fitting type B. All ECa values are mean-centered and represented as ECa changes.</p> "> Figure 10
<p>Comparison of modelled apparent electrical conductivity (ECa<sub>mod</sub>), denoted as black lines, with measured apparent electrical conductivity (ECa<sub>ms</sub>), denoted as red circles, as a function of the mean of temperatures 3 and 9 for 15 datasets, using calibration parameters obtained from fitting type C. All ECa values are mean-centered and represented as ECa changes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement System
2.2. Drift Correction Model
2.3. Selection of Temperature Sensors
2.4. Assessment of Spatial Temperature Variation
2.5. Determination of the Representative Calibration Parameters
3. Results and Discussion
3.1. Selection of Temperature Sensors
3.2. Assessment of Spatial Temperature Variation
3.3. Estimation of Calibration Parameter Boundaries
3.4. Determination of the Representative Calibration Parameters
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heil, K.; Schmidhalter, U. Theory and Guidelines for the Application of the Geophysical Sensor EM38. Sensors 2019, 19, 4293. [Google Scholar] [CrossRef]
- Robinson, D.A.; Lebron, I.; Kocar, B.; Phan, K.; Sampson, M.; Crook, N.; Fendorf, S. Time-lapse geophysical imaging of soil moisture dynamics in tropical deltaic soils: An aid to interpreting hydrological and geochemical processes. Water Resour. Res. 2009, 45, 185–188. [Google Scholar] [CrossRef]
- Knödel, K.; Krummel, H.; Lange, G. Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten; Springer: New York, NY, USA, 2005; Volume 3. [Google Scholar]
- Bonsall, J.; Fry, R.; Gaffney, C.; Armit, I.; Beck, A.; Gaffney, V. Assessment of the CMD Mini-Explorer, a New Low-frequency Multi-coil Electromagnetic Device, for Archaeological Investigations. Archaeol. Prospect. 2013, 20, 219–231. [Google Scholar] [CrossRef]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. Geonics Limited. 1980, 6, TN-6. [Google Scholar]
- Allred, J.; Daniels, J.; Ehsani, R. Handbook of Agricultural Geophysics. Soc. Explor. Geophys. 2008, 131, 130–311. [Google Scholar]
- Corwin, D. Past, present, and future trends of soil electrical conductivity measurement using geophysical methods. In Handbook of Agricultural Geophysics; CRC Press: Boca Raton, FL, USA, 10 June 2008; Volume 1, pp. 17–44. [Google Scholar]
- Corwin, D.L.; Lesch, S.M. Application of Soil Electrical Conductivity Measurements in Agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Schmäck, J.; Weihermüller, L.; Klotzsche, A.; von Hebel, C.; Pätzold, S.; Welp, G.; Vereecken, H. Large-scale detection and quantification of harmful soil compaction in a post-mining landscape using multi-configuration electromagnetic induction. Soil Use Manag. 2022, 38, 212–228. [Google Scholar] [CrossRef]
- Gebbers, R.; Lück, E.; Dabas, M.; Domsch, H. Comparison of Instruments for Geoelectrical Soil Mapping at the Field Scale. Surf. Geophys. 2009, 7, 179–190. [Google Scholar] [CrossRef]
- van’t Veen, K.M.; Ferré, T.P.A.; Iversen, B.V.; Børgesen, C.D. Using machine learning to predict optimal electromagnetic induction instrument configurations for characterizing the shallow subsurface. Hydrol. Earth Syst. Sci. 2022, 26, 55–70. [Google Scholar] [CrossRef]
- Altdorff, D.; Galagedara, L.; Nadeem, M.; Cheema, M.; Unc, A. Effect of agronomic treatments on the accuracy of soil moisture mapping by electromagnetic induction. Catena 2018, 164, 96–106. [Google Scholar] [CrossRef]
- Weller, U.; Zipprich, M.; Sommer, M.; Castell, W.Z.; Wehrhan, M. Mapping Clay Content across Boundaries at the Landscape Scale with Electromagnetic Induction. Soil Sci. Soc. Am. J.-SSSAJ 2007, 71, 1740–1747. [Google Scholar] [CrossRef]
- Minsley, B.J.; Smith, B.D.; Hammack, R.; Sams, J.I.; Veloski, G. Calibration and filtering strategies for frequency domain electromagnetic data. J. Appl. Geophys. 2012, 80, 56–66. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Comput. Electron. Agric. 2001, 31, 239–264. [Google Scholar] [CrossRef]
- Nüsch, A.K.; Dietrich, P.; Werban, U.; Behrens, T.; Prakongkep, N. Acquisition and reliability of geophysical data in soil science. In Proceedings of the 19th World 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; Volume 7. [Google Scholar]
- Robinson, D.A.; Lebron, I.; Lesch, S.M.; Shouse, P. Minimizing Drift in Electrical Conductivity Measurements in High Temperature Environments using the EM-38. Soil Sci. Soc. Am. J. 2004, 68, 339–345. [Google Scholar] [CrossRef]
- Delefortrie, S.; De Smedt, P.; Saey, T.; Van De Vijver, E.; Van Meirvenne, M. An efficient calibration procedure for correction of drift in EMI survey data. J. Appl. Geophys. 2014, 110, 115–125. [Google Scholar] [CrossRef]
- Huang, J.; Minasny, B.; Whelan, B.M.; McBratney, A.B.; Triantafilis, J. Temperature-dependent hysteresis effects on EM induction instruments: An example of single-frequency multi-coil array instruments. Comput. Electron. Agric. 2016, 132, 76–85. [Google Scholar] [CrossRef]
- Hanssens, D.; Van De Vijver, E.; Waegeman, W.; Everett, M.E.; Moffat, I.; Sarris, A.; De Smedt, P. Ambient temperature and relative humidity-based drift correction in frequency domain electromagnetics using machine learning. Surf. Geophys. 2021, 19, 541–556. [Google Scholar] [CrossRef]
- Mester, A.; Zimmermann, E.; Van der Kruk, J.; Vereecken, H.; Van Waasen, S. Development and drift-analysis of a modular electromagnetic induction system for shallow ground conductivity measurements. Meas. Sci. Technol. 2014, 25, 055801. [Google Scholar] [CrossRef]
- Abdu, H.; Robinson, D.A.; Jones, S.B. Comparing Bulk Soil Electrical Conductivity Determination Using the DUALEM-1S and EM38-DD Electromagnetic Induction Instruments. Soil Sci. Soc. Am. J. 2007, 71, 189–196. [Google Scholar] [CrossRef]
- Tan, X. Development of Electromagnetic Induction Measurement and Inversion Methods for Soil Electrical Conductivity Investigations. Ph.D. Dissertation, RWTH Aachen, Aachen, Germany, 2019. [Google Scholar]
- Tazifor, M.; Zimmermann, E.; Huisman, J.A.; Dick, M.; Mester, A.; Van Waasen, S. Model-Based Correction of Temperature-Dependent Measurement Errors in Frequency Domain Electromagnetic Induction (FDEMI) Systems. Sensors 2022, 22, 3882. [Google Scholar] [CrossRef]
- Mester, A.; van der Kruk, J.; Zimmermann, E.; Vereecken, H. Quantitative Two-Layer Conductivity Inversion of Multi-Configuration Electromagnetic Induction Measurements. Vadose Zone J. 2011, 10, 1319–1330. [Google Scholar] [CrossRef]
- Ward, S.; Hohmann, G. Electromagnetic theory for geophysical applications in Electromagnetic methods in applied geophysics. Soc. Explor. Geophys. 1988, 131, 130–311. [Google Scholar]
- Von Hebel, C.; Van der Kruk, J.; Huisman, J.A.; Mester, A.; Altdorff, D.; Endres, A.L.; Zimmermann, E.; Garré, S.; Vereecken, H. Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data. Sensors 2019, 19, 4753. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Mester, A.; von Hebel, C.; Zimmermann, E.; Vereecken, H.; van Waasen, S.; van der Kruk, J. Simultaneous calibration and inversion algorithm for multiconfiguration electromagnetic induction data acquired at multiple elevations. Geophysics 2019, 84, EN1–EN14. [Google Scholar] [CrossRef]
- Heiniger, R.W.; McBride, R.G.; Clay, D.E. Using Soil Electrical Conductivity to Improve Nutrient Management. Agron. J. 2003, 95, 508–519. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal component analysis: A beginner’s guide. Introduction and application. Weather 1990, 45, 375–382. [Google Scholar] [CrossRef]
- Trench, W.F. Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices. Linear Algebra Its Appl. 2004, 389, 23–31. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R.A. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
Parameters | Boundaries | G1 (mradK −1) | G2 (mradK −1) | 1 (s) | 2 (s) | NL1 | NL2 |
---|---|---|---|---|---|---|---|
Correlation | Lower | −0.1 | −0.1 | 0 | 0 | 0 | 0 |
Upper | 0.1 | 0.1 | 4000 | 4000 | 2.5 | 2.5 | |
Initial | Lower | −0.1 | −0.1 | 0 | 0 | 1 | 1 |
Upper | 0.1 | 0.1 | 4000 | 4000 | 1 | 1 | |
Constrained | Lower | −0.06 | 0.05 | 0 | 500 | 0 | 0 |
Upper | −0.005 | 0.1 | 1000 | 4500 | 2.5 | 2.5 |
Calibration Strategy Type | G1 (mradK −1 ) | G2 (mradK −1 ) | 1 (s) | 2 (s) | NL1 | NL2 |
---|---|---|---|---|---|---|
B | −0.022 | 0.061 | 0.002 | 1033 | 0.291 | 1.02 |
C | 0.048 | - | 2057 | - | 1.48 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tazifor Tchantcho, M.; Zimmermann, E.; Huisman, J.A.; Dick, M.; Mester, A.; van Waasen, S. Low-Pass Filters for a Temperature Drift Correction Method for Electromagnetic Induction Systems. Sensors 2023, 23, 7322. https://doi.org/10.3390/s23177322
Tazifor Tchantcho M, Zimmermann E, Huisman JA, Dick M, Mester A, van Waasen S. Low-Pass Filters for a Temperature Drift Correction Method for Electromagnetic Induction Systems. Sensors. 2023; 23(17):7322. https://doi.org/10.3390/s23177322
Chicago/Turabian StyleTazifor Tchantcho, Martial, Egon Zimmermann, Johan Alexander Huisman, Markus Dick, Achim Mester, and Stefan van Waasen. 2023. "Low-Pass Filters for a Temperature Drift Correction Method for Electromagnetic Induction Systems" Sensors 23, no. 17: 7322. https://doi.org/10.3390/s23177322
APA StyleTazifor Tchantcho, M., Zimmermann, E., Huisman, J. A., Dick, M., Mester, A., & van Waasen, S. (2023). Low-Pass Filters for a Temperature Drift Correction Method for Electromagnetic Induction Systems. Sensors, 23(17), 7322. https://doi.org/10.3390/s23177322