Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data
<p>Flowchart of EMI data calibration and conversion strategies used for inversion. The calibration is based on direct current data, which are used to predict σ<sub>a</sub>. A linear regression between measured and predicted σ<sub>a</sub> provides multiplicative and additive calibration factors that are used to obtain quantitative σ<sub>a</sub>. These are converted to the quadrature (Q) component of the magnetic field ratios using the low induction number approximation (LIN app) and the exact EMI conversion (EEC). The respective Q values are then inverted to obtain a layered electrical conductivity model of the subsurface. Abbreviations: EMI, electromagnetic induction; DC, direct current; ERT, electrical resistivity tomography; VES, vertical electrical sounding.</p> "> Figure 2
<p>(<b>a</b>) The time varying primary magnetic field induces a secondary field that superimposes to a resultant magnetic field. (<b>b</b>) This oscillating field can be represented in the frequency domain, where it draws a phasor line that is composed of an in-phase and a quadrature component.</p> "> Figure 3
<p>(<b>a</b>) Section of EMI and DC investigation volume respectively estimated for the EMI coil configurations and Dipole-Dipole center distances (cd) shown in (<b>b</b>). The EMI investigation volume lies above and below the surface. Note that stationary influences close to the EMI system contribute to Q and thus to σ<sub>a</sub>. For DC, only the subsurface is measured. (<b>b</b>) EMI and DC sensitivities; in red and dark red for the six EMI coil configurations of the CMD-MiniExplorer and in grey shadings for eight Dipole-Dipole center distances for an homogeneous half-space.</p> "> Figure 4
<p>(<b>a</b>) Phasor diagram for the vertical coplanar (VCP) and horizontal coplanar (HCP) coil configuration computed using Equations (2) and (3). The coil separation was s = 1 m and the frequency f = 30 kHz. σ ranged from 0 to 50,000 mS/m. (<b>b</b>) Close-up for N<sub>b</sub> ≤ 0.11 or σ ≤ 100 mS/m where the low induction number (LIN) approximation is assumed to be valid. The amplitude differences ΔA indicate that the LIN-approximation model (Equation (9)) overestimates the quadrature values even for these low values of σ.</p> "> Figure 5
<p>Accuracy of the low induction number-based conversion (LIN-approximation) and the exact EMI conversion (EEC) approach. The 1:1 line is provided in black. Blue lines show LIN-approximation and red lines show the EEC approach. Panels (<b>a</b>,<b>b</b>) show the conversion for VCP and HCP coils, respectively, where s = 1, 2, 4 m, f = 30 kHz, and 0 < σ < 100 mS/m. Panels (<b>c</b>,<b>d</b>) show the conversion results for VCP and HCP coils for a broader electrical conductivity range with s = 1 m and f = 30 kHz.</p> "> Figure 6
<p>σ<sub>a</sub> values measured with two different measurement set-ups using a crutch (Cr) and a sled (Sl) along a 30 m transect for VCP (<b>a</b>,<b>c</b>,<b>e</b>) and HCP (<b>b</b>,<b>d</b>,<b>f</b>) coil orientations with increasing s from top to bottom. The solid and dashed lines, respectively, show the regression and the 1:1 line.</p> "> Figure 7
<p>Direct current data inversion results. (<b>a</b>) ERT Dipole-Dipole inversion result. (<b>b</b>) ERT Schlumberger inversion result. (<b>c</b>) Vertical electrical sounding, VES1, VES2, and VES3, data inversion results in black. In red and blue, extracted ERT Dipole-Dipole and Schlumberger inversion results at the VES locations. At VES3, no ERT information was available. Note the scales at the VES data x-axes.</p> "> Figure 8
<p>Comparison of the σ<sub>a</sub> calibration approaches based on Dipole-Dipole, Schlumberger, and VES direct current methods. (<b>a</b>) Linear regression between measured and predicted σ<sub>a</sub> values obtained from inverted DC data over a 30-m-long transect with Dipole-Dipole (red) and Schlumberger (blue) electrode arrays, and the inverted VES (black) data at three locations of the ERT line. (<b>b</b>) Obtained multiplicative and additive calibration factors. (<b>c</b>) Quantitative σ<sub>a</sub> values based on inverted Dipole-Dipole (red), Schlumberger (blue), and VES (black) data that clearly differ from the measured σ<sub>a</sub> values (grey), as indicated by the arrows.</p> "> Figure 9
<p>Eighteen and sixteen calibration data sets for a wide range of σ<sub>a</sub> over different soils and land uses for VCP and HCP coils, respectively. (<b>a</b>–<b>f</b>) show the VCP and HCP calibration data in the left and right column, respectively, with increasing s from top to bottom. (<b>g</b>, <b>h</b>) show the mean and standard deviations of the mean absolute deviation (MAD = |( σ<sub>a</sub><sup>meas</sup> - σ<sub>a</sub><sup>pred</sup>)|), of the multiplicative (m), and additive (b) calibration factors.</p> "> Figure 10
<p>Comparison of calibration and conversion approaches in multi-coil EMI data inversions. (<b>a</b>,<b>b</b>) show the reference ERT tomograms using Dipole-Dipole and Schlumberger electrode arrays, respectively. (<b>c</b>) shows the EMI inversion of uncalibrated data. (<b>d</b>,<b>e</b>) show the EMI inversion of Dipole-Dipole and Schlumberger-based calibration, together with the LIN-approximation. (<b>f</b>,<b>g</b>) show the corresponding EMI inversion results using the EEC approach. (<b>h</b>) shows the VES-based calibrated results converted with EEC. (<b>i</b>) shows mean and standard deviation of the mean absolute deviation (MAD), as well as of the data misfit ΔQ (Equation (11)), and the model misfit Δσ (Equation (12)).</p> ">
Abstract
:1. Introduction
2. Electromagnetic Induction Data Modeling, Conversion, Calibration, and Inversion
2.1. EMI Principle
2.1.1. Maxwell-Based EMI Forward Models for Homogeneous and Layered Subsurfaces
2.1.2. Low Induction Number Forward Model
2.2. Exact Non-Linear EMI Conversion
2.3. Inversion of Multi-Coil EMI Data
2.4. Models and EMI System Specifications for Simulation of Synthetic Data
2.5. Direct Current Principle and Comparison to EMI
2.6. Calibration of EMI Multi-Coil σa Based on Direct Current Data
2.7. Test Sites for EMI Calibration, Conversion, and Inversion
3. Results and Discussion
3.1. Performance of the LIN-Approximation and EEC Approach on Synthetic Data
3.1.1. Comparison of the Full Solution and LIN-Approximation
3.1.2. Conversion Accuracy for Homogeneous and Layered Subsurface
3.1.3. Impact of the Conversion Approaches on EMI Data Inversion
3.2. Calibration Results and Impact of Calibration and Conversion on EMI Data Inversion
3.2.1. External Influences on EMI Measurements
3.2.2. EMI Calibration Based on Electrical Resistivity and Vertical Electrical Sounding
3.2.3. Stability of σa Calibration over Different Soils
3.3. Impact of Calibration and Conversion on EMI Data Inversion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. EMI and DC Similarities
Appendix B. EMI Primary and Resultant Magnetic Field of Homogeneous Ground
Appendix C. Direct Current Data Modeling and Inversion
References
- Abdu, H.; Robinson, D.A.; Seyfried, M.; Jones, S.B. Geophysical imaging of watershed subsurface patterns and prediction of soil texture and water holding capacity. Water Resour. Res. 2008, 44, W00D18. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223, 33–45. [Google Scholar] [CrossRef]
- Saey, T.; De Smedt, P.; De Clercq, W.; Meerschman, E.; Islam, M.M.; Van Meirvenne, M. Identifying Soil Patterns at Different Spatial Scales with a Multi-Receiver EMI Sensor. Soil Sci. Soc. Am. J. 2013, 77, 382–390. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G.; Clay, D.E.; Palm, H.L.; Pierce, F.J.; Schuler, R.T.; et al. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Kaufmann, M.S.; von Hebel, C.; Weihermüller, L.; Baumecker, M.; Döring, T.; Schweitzer, K.; Hobley, E.; Bauke, S.L.; Amelung, W.; Vereecken, H.; et al. Effect of fertilizers and irrigation on multi-configuration electromagnetic induction measurements. Soil Use Manag. 2019. [Google Scholar] [CrossRef]
- Lausch, A.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Chabrilliat, S.; Dietrich, P.; Gerighausen, H.; Glässer, C.; Hacker, J.M.; et al. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sens. 2019, 11, 2356. [Google Scholar] [CrossRef]
- Rudolph, S.; van der Kruk, J.; von Hebel, C.; Ali, M.; Herbst, M.; Montzka, C.; Patzold, S.; Robinson, D.A.; Vereecken, H.; Weihermuller, L. Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma 2015, 241, 262–271. [Google Scholar] [CrossRef]
- Stadler, A.; Rudolph, S.; Kupisch, M.; Langensiepen, M.; van der Kruk, J.; Ewert, F. Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. Eur. J. Agron. 2015, 64, 8–20. [Google Scholar] [CrossRef]
- Von Hebel, C.; Matveeva, M.; Verweij, E.; Rademske, P.; Kaufmann, M.S.; Brogi, C.; Vereecken, H.; Rascher, U.; van der Kruk, J. Understanding Soil and Plant Interaction by Combining Ground-Based Quantitative Electromagnetic Induction and Airborne Hyperspectral Data. Geophys. Res. Lett. 2018, 45, 7571–7579. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Yemoto, K.; Clary, W.; Banuelos, G.; Skaggs, T.H.; Lesch, S.M.; Scudiero, E. Evaluating Oilseed Biofuel Production Feasibility in California’s San Joaquin Valley Using Geophysical and Remote Sensing Techniques. Sensors 2017, 17, 2343. [Google Scholar] [CrossRef] [PubMed]
- Thiesson, J.; Tabbagh, A.; Dabas, M.; Chevalier, A. Characterization of buried cables and pipes using electromagnetic induction loop-loop frequency-domain devices. Geophysics 2018, 83, E1–E10. [Google Scholar] [CrossRef]
- Cygal, A.; Stefanuik, M.; Kret, A.; Kurowska, M. The application of electrical resistivity tomography (ERT), induced polarization (IP) and electromagnetic conductivity (EMC) methods for the evaluation of technical condition of flood embankment corpus. Geol. Geophys. Environ. 2016, 42, 279–287. [Google Scholar] [CrossRef]
- Brogi, C.; Huisman, J.A.; Pätzold, S.; von Hebel, C.; Weihermüller, L.; Kaufmann, M.S.; van der Kruk, J.; Vereecken, H. Large-scale soil mapping using multi-configuration EMI and supervised image classification. Geoderma 2019, 335, 133–148. [Google Scholar] [CrossRef]
- De Smedt, P.; Saey, T.; Lehouck, A.; Stichelbaut, B.; Meerschman, E.; Islam, M.M.; Van De Vijver, E.; Van Meirvenne, M. Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90 ha dataset. Geoderma 2013, 199, 30–36. [Google Scholar] [CrossRef]
- Frederiksen, R.R.; Christiansen, A.V.; Christensen, S.; Rasmussen, K.R. A direct comparison of EMI data and borehole data on a 1000 ha data set. Geoderma 2017, 303, 188–195. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors 2017, 17, 2540. [Google Scholar] [CrossRef]
- Frischknecht, F.C.; Spies, B.R.; Anderson, W.L. Profiling methods using small sources. In Electromagnetic Methods in Applied Geophysics; Nabighian, M.N., Ed.; Soceity of Exploration Geophysicists: Tulsa, OK, USA, 1988; Volume 1–3, pp. 105–270. [Google Scholar]
- McNeill, J.D. Use of electromagnetic methods for groundwater studies. In Geotechnical and Environmental Geophysics; Ward, S.H., Ed.; Soceity of Exploration Geophysicists: Tulsa, OK, USA, 1990; Volume 1, pp. 191–208. [Google Scholar]
- Guérin, R.; Méhéni, Y.; Rakotondrasoa, G.; Tabbagh, A. Interpretation of slingram conductivity mapping in near-surface geophysics: Using a single parameter fitting with 1D model1. Geophys. Prospect. 1996, 44, 233–249. [Google Scholar] [CrossRef]
- Hendrickx, J.M.H.; Borchers, B.; Corwin, D.L.; Lesch, S.M.; Hilgendorf, A.C.; Schlue, J. Inversion of soil conductivity profiles from electromagnetic induction measurements: Theory and experimental verification. Soil Sci. Soc. Am. J. 2002, 66, 673–685. [Google Scholar] [CrossRef]
- Mester, A.; van der Kruk, J.; Zimmermann, E.; Vereecken, H. Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements. Vadose Zone J. 2011, 10, 1319–1330. [Google Scholar] [CrossRef]
- Von Hebel, C.; Rudolph, S.; Mester, A.; Huisman, J.A.; Kumbhar, P.; Vereecken, H.; van der Kruk, J. Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data. Water Resour. Res. 2014, 50, 2732–2748. [Google Scholar] [CrossRef] [Green Version]
- Monteiro Santos, F.A.; Triantafilis, J.; Bruzgulis, K. A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: Application to DUALEM-421 data collected in a riverine plain. Geophysics 2011, 76, B43–B53. [Google Scholar] [CrossRef]
- Rejiba, F.; Schamper, C.; Chevalier, A.; Deleplancque, B.; Hovhannissian, G.; Thiesson, J.; Weill, P. Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: A case study in the alluvial plain of the River Seine, France. Hydrol. Earth Syst. Sci. 2018, 22, 159–170. [Google Scholar] [CrossRef]
- Martinelli, P.; Duplaá, M.C. Laterally filtered 1D inversions of small-loop, frequency-domain EMI data from a chemical waste site. Geophysics 2008, 73, F143–F149. [Google Scholar] [CrossRef] [Green Version]
- Hunkeler, P.A.; Hoppmann, M.; Hendricks, S.; Kalscheuer, T.; Gerdes, R. A glimpse beneath Antarctic sea ice: Platelet layer volume from multifrequency electromagnetic induction sounding. Geophys. Res. Lett. 2016, 43, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Slichter, L.B. The interpretation of the resistivity prospecting-method for horizontal structures. Eos Trans. Am. Geophys. Union 1933, 14, 129. [Google Scholar] [CrossRef]
- Dafflon, B.; Hubbard, S.S.; Ulrich, C.; Peterson, J.E. Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Triantafilis, J.; Wong, V.; Santos, F.A.M.; Page, D.; Wege, R. Modeling the electrical conductivity of hydrogeological strata using joint-inversion of loop-loop electromagnetic data. Geophysics 2012, 77, WB99–WB107. [Google Scholar] [CrossRef]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebbers, R.; Lueck, E.; Dabas, M.; Domsch, H. Comparison of instruments for geoelectrical soil mapping at the field scale. Near Surf. Geophys. 2009, 7, 179–190. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Bollero, G.A.; Bullock, D.G.; Wiebold, W.J. Comparison of Electromagnetic Induction and Direct Sensing of Soil Electrical Conductivity. Agron. J. 2003, 95, 472–482. [Google Scholar] [CrossRef]
- Nüsch, A.K.; Dietrich, P.; Werban, U.; Behrens, T. Acquisition and reliability of geophysical data in soil science. In Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Heil, K.; Schmidhalter, U. Theory and Guidelines for the Application of the Geophysical Sensor EM38. Sensors 2019, 19, 4293. [Google Scholar] [CrossRef]
- Weymer, B.A.; Everett, M.E.; Houser, C.; Wernette, P.; Barrineau, P. Differentiating tidal and groundwater dynamics from barrier island framework geology: Testing the utility of portable multifrequency electromagnetic induction profilers. Geophysics 2016, 81, E347–E361. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Mester, A.; von Hebel, C.; Zimmermann, E.; Vereecken, H.; van Waasen, S.; van der Kruk, J. Simultaneous calibration and inversion algorithm for multi-configuration electromagnetic induction data acquired at multiple elevations. Geophysics 2018, 84, 1–55. [Google Scholar] [CrossRef]
- Moghadas, D.; Andre, F.; Bradford, J.H.; van der Kruk, J.; Vereecken, H.; Lambot, S. Electromagnetic induction antenna modelling using a linear system of complex antenna transfer functions. Near Surf. Geophys. 2012, 10, 237–247. [Google Scholar] [CrossRef]
- Lavoué, F.; van der Kruk, J.; Rings, J.; Andre, F.; Moghadas, D.; Huisman, J.A.; Lambot, S.; Weihermüller, L.; Vanderborght, J.; Vereecken, H. Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography. Near Surf. Geophys. 2010, 8, 553–561. [Google Scholar] [CrossRef]
- Cavalcante Fraga, L.H.; Schamper, C.; Noël, C.; Guérin, R.; Rejiba, F. Geometrical characterization of urban fill by integrating the multi-receiver electromagnetic induction method and electrical resistivity tomography: A case study in Poitiers, France. Eur. J. Soil Sci. 2019, 0. [Google Scholar] [CrossRef]
- Minsley, B.J.; Smith, B.D.; Hammack, R.; Sams, J.I.; Veloski, G. Calibration and filtering strategies for frequency domain electromagnetic data. J. Appl. Geophys. 2012, 80, 56–66. [Google Scholar] [CrossRef]
- Shanahan, P.W.; Binley, A.; Whalley, W.R.; Watts, C.W. The Use of Electromagnetic Induction to Monitor Changes in Soil Moisture Profiles beneath Different Wheat Genotypes. Soil Sci. Soc. Am. J. 2015, 79, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Whalley, W.R.; Binley, A.; Watts, C.W.; Shanahan, P.; Dodd, I.C.; Ober, E.S.; Ashton, R.W.; Webster, C.P.; White, R.P.; Hawkesford, M.J. Methods to estimate changes in soil water for phenotyping root activity in the field. Plant Soil 2017, 415, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Slater, L. Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries-A review. Surv. Geophys. 2007, 28, 169–197. [Google Scholar] [CrossRef]
- Loewer, M.; Günther, T.; Igel, J.; Kruschwitz, S.; Martin, T.; Wagner, N. Ultra-broad-band electrical spectroscopy of soils and sediments—A combined permittivity and conductivity model. Geophys. J. Int. 2017, 210, 1360–1373. [Google Scholar] [CrossRef]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers; Tech. Note Tn-6. Geonics Ltd.: Mississauga, ON, Canada, 1980. [Google Scholar]
- Roy, A. Depth of investigation in Wenner, three-electrode and dipole-dipole DC resistivity methods. Geophys. Prospect. 1972, 20, 329–340. [Google Scholar] [CrossRef]
- Thiesson, J.; Kessouri, P.; Schamper, C.; Tabbagh, A. Calibration of frequency-domain electromagnetic devices used in near-surface surveying. Near Surf. Geophys. 2014, 12, 481–491. [Google Scholar] [CrossRef]
- Beamish, D. Low induction number, ground conductivity meters: A correction procedure in the absence of magnetic effects. J. Appl. Geophys. 2011, 75, 244–253. [Google Scholar] [CrossRef] [Green Version]
- McNeill, J.D.; Bosnar, M. Application of “Dipole-Dipole” Electromagnetic Systems for Geological Depth Sounding; Tech. Note Tn-31, Geonics Ltd.: Mississauga, ON, Canada, 1999. [Google Scholar]
- Guillemoteau, J.; Simon, F.X.; Luck, E.; Tronicke, J. 1D sequential inversion of portable multi-configuration electromagnetic induction data. Near Surf. Geophys. 2016, 14, 423–432. [Google Scholar] [CrossRef]
- Hanssens, D.; Delefortrie, S.; Bobe, C.; Hermans, T.; De Smedt, P. Improving the reliability of soil EC-mapping: Robust apparent electrical conductivity (rECa) estimation in ground-based frequency domain electromagnetics. Geoderma 2019, 337, 1155–1163. [Google Scholar] [CrossRef]
- Huang, H.; Won, I.J. Conductivity and Susceptibility Mapping Using Broadband Electromagnetic Sensors. J. Environ. Eng. Geophys. 2000, 5, 31–41. [Google Scholar] [CrossRef]
- Guillemoteau, J.; Sailhac, P.; Boulanger, C.; Trules, J. Inversion of ground constant offset loop-loop electromagnetic data for a large range of induction numbers. Geophysics 2015, 80, E11–E21. [Google Scholar] [CrossRef]
- Van der Kruk, J.; Meekes, J.A.C.; van den Berg, P.M.; Fokkema, J.T. An apparent-resistivity concept for low-frequency electromagnetic sounding techniques. Geophys. Prospect. 2000, 48, 1033–1052. [Google Scholar] [CrossRef]
- Eva, Gregorova; GF-Instruments –Instruments, Brno, Czesh Republic. Personal communication, 2019. Quote: The CMD Mini-Explorer is calibrated in conductivities directly and uses the McNeill LIN approximation as a principle, but not for arithmetical calculation. Personel communication, 2019. Email as pdf available from J. van der Kruk, C. von Hebel.
- Rick, Taylor; DualEM, Milton, Canada. Personal communication, 2018. Quote:EMI instruments with short [<4 m] Tx-Rx separations are generally incapable of measuring in-phase with interpretable accuracy [...].Email as pdf available from C. von Hebel. Also stated online: http://www.dualem.com/eioi.htm below figure 9 (accessed on 28 August 2019).
- Knödel, K.L.G.; Voigt, H.-J. Environmental Geology; Geowissenschaften, B.F., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007. [Google Scholar]
- Telford, W.M.; Telford, W.M.; Geldart, L.P.; Sheriff, R.E.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1990. [Google Scholar]
- Wait, J.R. Mutual coupling of loops lying on the ground. Geophysics 1954, 19, 290–296. [Google Scholar] [CrossRef]
- Wait, J.R. Mutual electromagnetic coupling of loops over a homogeneous ground. Geophysics 1955, 20, 630–637. [Google Scholar] [CrossRef]
- Fitterman, D.V.; Labson, V.F. Electromagnetic Induction Methods for Environmental Problems. In Near-Surface Geophysics; Society of Exploration Geophysicists: Tulsa, OK, USA, 2005; pp. 301–356. [Google Scholar] [CrossRef]
- Wait, J.R. Geo-Electromagnetism; Academic Press Inc.: New York, NY, USA; London, UK, 1982. [Google Scholar]
- Ward, S.H.; Hohmann, G. Electromagnetic Theory for Geophysical Applications. In Electromagnetic Methods in Applied Geophysics; Nabighian, M.N., Ed.; Soceity of Exploration Geophysicists: Tulsa, OK, USA, 1988; Volume 1, pp. 130–311. [Google Scholar]
- Duan, Q.Y.; Sorooshian, S.; Gupta, V.K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Suffled complex evolution apporach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Mboh, C.M.; Huisman, J.A.; Vereecken, H. Feasibility of Sequential and Coupled Inversion of Time Domain Reflectometry Data to Infer Soil Hydraulic Parameters under Falling Head Infiltration. Soil Sci. Soc. Am. J. 2011, 75, 775–786. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Gupta, H.V.; Bouten, W.; Sorooshian, S. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 2003, 39, 1201. [Google Scholar] [CrossRef]
- Callegary, J.B.; Ferre, T.P.A.; Groom, R.W. Three-Dimensional Sensitivity Distribution and Sample Volume of Low-Induction-Number Electromagnetic-Induction Instruments. Soil Sci. Soc. Am. J. 2012, 76, 85–91. [Google Scholar] [CrossRef]
- Barker, R.D. Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics 1989, 54, 1031–1037. [Google Scholar] [CrossRef]
- Roy, A.; Apparao, A. Depth of investigation in direct current methods. Geophysics 1971, 36, 943–959. [Google Scholar] [CrossRef]
- Loke, M.H. Electrical Imaging Surveys for Environmental and Engineering Studies. 2000. Available online: https://pages.mtu.edu/~ctyoung/LOKENOTE.PDF (accessed on 9 September 2019).
- Simmer, C.; Thiele-Eich, I.; Masbou, M.; Amelung, W.; Bogena, H.R.; Crewell, S.; Diekkrüger, B.; Ewert, F.; Hendricks Franssen, H.-J.; Huisman, J.A.; et al. Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System. Bull. Am. Meteorol. Soc. 2015, 96, 1765–1787. [Google Scholar] [CrossRef]
- Bogena, H.R.; Montzka, C.; Huisman, J.A.; Graf, A.; Schmidt, M.; Stockinger, M.; von Hebel, C.; Hendricks-Franssen, H.J.; van der Kruk, J.; Tappe, W.; et al. The TERENO-Rur Hydrological Observatory: A Multiscale Multi-Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone J. 2018, 17, 1–22. [Google Scholar] [CrossRef]
- Weihermüller, L.; Huisman, J.A.; Lambot, S.; Herbst, M.; Vereecken, H. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol. 2007, 340, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Gebler, S.; Hendricks Franssen, H.J.; Kollet, S.J.; Qu, W.; Vereecken, H. High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data. J. Hydrol. 2017, 547, 309–331. [Google Scholar] [CrossRef]
- Schröder, P.; Huber, B.; Olazábal, U.; Kämmerer, A.; Munch, J.C. Land use and sustainability: FAM Research Network on Agroecosystems. Geoderma 2002, 105, 155–166. [Google Scholar] [CrossRef]
- Mester, A.; Zimmermann, E.; Van der Kruk, J.; Vereecken, H.; Van Waasen, S. Development and drift-analysis of a modular electromagnetic induction system for shallow ground conductivity measurements. Meas. Sci. Technol. 2014, 25, 13. [Google Scholar] [CrossRef]
- Igel, J. On the Small-Scale Variability of Electrical Soil Properties and its Influence on Geophysical Measurements. Ph.D. Thesis, Johann Wolfgang Goethe University, Frankfurt am Main, Frankfurt, Germany, 2007. [Google Scholar]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods of Geophysical Prospecting; International Series of Monographs on Electromagnetic Waves; Pergamon Press: Oxford, NY, USA, 1966; Volume 10. [Google Scholar]
- Koefoed, O. A fast method for determining the layer distribution from the raised kernel function in geoelectrical sounding. Geophys. Prospect. 1970, 18, 564–570. [Google Scholar] [CrossRef]
- Ekinci, Y.L.; Demirci, A. A Damped Least-Squares Inversion Program for the Interpretation of Schlumberger Sounding Curves. J. Appl. Sci. 2008, 8, 4070–4078. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.K.; Niwas, S.; Gaur, V.K. Straightforward inversion of vertical electrical sounding data. Geophysics 1997, 62, 775–785. [Google Scholar] [CrossRef] [Green Version]
Model | σ1, σ2, σ3 [mS/m] | h1, h2 [m] | LIN-VCP [mS/m] | EEC-VCP [mS/m] | Error LIN-VCP [%] | LIN- HCP [mS/m] | EEC-HCP [mS/m] | Error LIN-HCP [%] |
---|---|---|---|---|---|---|---|---|
1 | 10, 20, 50 | 0.3, 0.5 | 22.3 | 23.0 | 2.8 | 32.8 | 30.6 | 6.6 |
2 | 50, 20, 10 | 0.3, 0.5 | 29.9 | 30.9 | 3.2 | 19.6 | 18.6 | 5.1 |
3 | 20, 100, 500 | 0.3, 0.5 | 128.3 | 137.7 | 6.8 | 240.7 | 197.7 | 17.9 |
Parameter/Approach | σ1 [mS/m] | σ2 [mS/m] | σ3 [mS/m] | h1 [m] | h2 [m] | Δσ [%] |
---|---|---|---|---|---|---|
Model 1 | 10.0 | 20.0 | 50.0 | 0.3 | 0.5 | |
LIN | 9.8 | 13.5 | 61.4 | 0.2 | 0.7 | 25.0 |
EEC | 10.0 | 19.8 | 49.9 | 0.3 | 0.5 | 1.4 |
Model 2 | 50.0 | 20.0 | 10.0 | 0.3 | 0.5 | |
LIN | 50.2 | 21.6 | 12.0 | 0.3 | 0.4 | 14.6 |
EEC | 50.0 | 22.0 | 10.6 | 0.3 | 0.4 | 9.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Hebel, C.; van der Kruk, J.; Huisman, J.A.; Mester, A.; Altdorff, D.; Endres, A.L.; Zimmermann, E.; Garré, S.; Vereecken, H. Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data. Sensors 2019, 19, 4753. https://doi.org/10.3390/s19214753
von Hebel C, van der Kruk J, Huisman JA, Mester A, Altdorff D, Endres AL, Zimmermann E, Garré S, Vereecken H. Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data. Sensors. 2019; 19(21):4753. https://doi.org/10.3390/s19214753
Chicago/Turabian Stylevon Hebel, Christian, Jan van der Kruk, Johan A. Huisman, Achim Mester, Daniel Altdorff, Anthony L. Endres, Egon Zimmermann, Sarah Garré, and Harry Vereecken. 2019. "Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data" Sensors 19, no. 21: 4753. https://doi.org/10.3390/s19214753
APA Stylevon Hebel, C., van der Kruk, J., Huisman, J. A., Mester, A., Altdorff, D., Endres, A. L., Zimmermann, E., Garré, S., & Vereecken, H. (2019). Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data. Sensors, 19(21), 4753. https://doi.org/10.3390/s19214753