SLAMICP Library: Accelerating Obstacle Detection in Mobile Robot Navigation via Outlier Monitoring following ICP Localization
<p>Two pictures of the mobile robot APR-02 while conducting the validation experiments: (<b>a</b>) starting position of the experiment; and (<b>b</b>) final position of the experiment.</p> "> Figure 2
<p>Schematic representation of the 2D point clouds gathered from a mobile robot (green circle): (<b>a</b>) reference partial point cloud <math display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math> (blue dots) obtained at the starting position <math display="inline"><semantics><mrow><mo>(</mo><mn>0,0</mn><mo>)</mo></mrow></semantics></math> and orientation 0°; and (<b>b</b>) partial point cloud <math display="inline"><semantics><mrow><mi>T</mi></mrow></semantics></math> (magenta dots) obtained after the robot has moved.</p> "> Figure 3
<p>Interpretation of the results of the ICP matching: (<b>a</b>) representation of the transformed point cloud <math display="inline"><semantics><mrow><mi>t</mi><mi>T</mi></mrow></semantics></math> (magenta dots), where the position <math display="inline"><semantics><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>y</mi></mrow></msub><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></semantics></math> defines the self-localization of the mobile robot relative to the point <math display="inline"><semantics><mrow><mo>(</mo><mn>0,0</mn><mo>,</mo><mn>0</mn><mo>°</mo><mo>)</mo></mrow></semantics></math> of <math display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math>; and (<b>b</b>) representation of the updated map <math display="inline"><semantics><mrow><mi>u</mi><mi>M</mi></mrow></semantics></math> (blue dots) created combining the transformed <math display="inline"><semantics><mrow><mi>t</mi><mi>T</mi></mrow></semantics></math> and <math display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math> point clouds, to be used in the following ICP matchings.</p> "> Figure 4
<p>Reference trajectory of the mobile robot represented on the real 2D map of the experimentation area.</p> "> Figure 5
<p>Depiction of the four different reference stationary obstacles (A, B, C, and D) used in this work. The number in the label identifies each one of the 3 different experiments conducted with an obstacle.</p> "> Figure 6
<p>Real 2D scans gathered from the 2D LIDAR of the mobile robot: (<b>a</b>) the initial scan used as the reference point cloud <math display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math>; and (<b>b</b>) scan <math display="inline"><semantics><mrow><mi>T</mi></mrow></semantics></math> obtained after the mobile robot has moved.</p> "> Figure 7
<p>Results of the ICP matching using the LIBICP library: (<b>a</b>) representation of the self-localization of the mobile robot in the point cloud <math display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math>; (<b>b</b>) update of the map <math display="inline"><semantics><mrow><mi>u</mi><mi>M</mi></mrow></semantics></math> based on the accumulation of <math display="inline"><semantics><mrow><mi>t</mi><mi>T</mi></mrow></semantics></math>, containing 2162 points.</p> "> Figure 8
<p>Results of the ICP matching using the SLAMICP library: (<b>a</b>) representation of the self-localization of the mobile robot in the point cloud <math display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math> detailing the outliers (red points) and inliers (green points) of <math display="inline"><semantics><mrow><mi>t</mi><mi>T</mi></mrow></semantics></math>; (<b>b</b>) update of the map <math display="inline"><semantics><mrow><mi>u</mi><mi>M</mi></mrow></semantics></math> based on the combination of <math display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math> and the outliers of <math display="inline"><semantics><mrow><mi>t</mi><mi>T</mi></mrow></semantics></math>, in this case containing 1617 points.</p> "> Figure 9
<p>Flowchart of the software agent processing the 2D LIDAR scans of the APR-02 mobile robot: (<b>a</b>) original implementation based on the LIBICP [<a href="#B62-sensors-23-06841" class="html-bibr">62</a>] library; and (<b>b</b>) improved implementation using the adapted SLAMICP [<a href="#B61-sensors-23-06841" class="html-bibr">61</a>] library proposed in this work.</p> "> Figure 10
<p>Representation of the outliers detected (red points) in the corridor (<a href="#sensors-23-06841-f005" class="html-fig">Figure 5</a>, obstacle A2): (<b>a</b>) the robot is about to enter the corridor; (<b>b</b>) the mobile robot has entered in the corridor; (<b>c</b>) the robot has completed most of the planned trajectory.</p> "> Figure 11
<p>Evolution of the number of outliers (discrepant points) detected in the LIDAR scans after ICP matching when the mobile robot follows the reference trajectory at different velocities. The labels (a), (b), and (c) identify the positions of the robot depicted in <a href="#sensors-23-06841-f010" class="html-fig">Figure 10</a>. Cases without obstacles (thick magenta line) and with the obstacle A2 (thin lines).</p> "> Figure 12
<p>Evolution of the mean inliers (matched points) distance computed after ICP matching when the mobile robot follows the reference trajectory at different velocities. The labels (a), (b), and (c) identify the position of the robot depicted in <a href="#sensors-23-06841-f010" class="html-fig">Figure 10</a>. Cases without obstacles (thick magenta line) and with the obstacle A2 (thin lines).</p> "> Figure 13
<p>Detection of a small circular obstacle in the corridor (<a href="#sensors-23-06841-f005" class="html-fig">Figure 5</a>, obstacle B2): (<b>a</b>) the robot is about to enter the corridor; (<b>b</b>) the mobile robot has entered the corridor; (<b>c</b>) the robot has completed most of the planned trajectory.</p> "> Figure 14
<p>Evolution of the number of outliers (discrepant points) detected in the LIDAR scans analyzed. Results obtained at different translational velocities of the mobile robot. The labels (a), (b), and (c) identify the positions of the robot depicted in <a href="#sensors-23-06841-f013" class="html-fig">Figure 13</a>. Cases without obstacles (thick magenta line) and with the obstacle B2.</p> "> Figure 15
<p>Evolution of the mean inliers (matched points) distance computed after ICP matching when the mobile robot follows the reference trajectory at different velocities. The labels (a), (b), and (c) identify the positions of the robot is depicted <a href="#sensors-23-06841-f013" class="html-fig">Figure 13</a>. Cases without obstacles (thick magenta line) and with the obstacle B2 (thin lines).</p> "> Figure 16
<p>Examples of object reconstruction based on the cumulative projection of the outliers detected (red dots) during the motion of the robot: (<b>a</b>) rectangular obstacle A2 displayed in <a href="#sensors-23-06841-f010" class="html-fig">Figure 10</a>; and (<b>b</b>) small circular obstacle B2 displayed in <a href="#sensors-23-06841-f013" class="html-fig">Figure 13</a>.</p> ">
Abstract
:1. Introduction
New Contribution
2. Materials and Methods
2.1. Mobile Robot
2.2. Experimentation Area
2.3. Vanilla ICP Algorithm
2.4. Reference LIBICP Library: Implementing the ICP Algorithm
2.5. Reference Trajectory Used in the Experimental Evaluation
2.6. Obstacle Definition
2.7. Performance Metric: Computation Time
3. ICP Implementation: Returning the Outliers
3.1. Reference ICP Matching Library
3.2. ICP Matching Improvement Returning the Outliers
3.3. Software Agent Implemented in the APR-02 Mobile Robot
4. Results
4.1. Obstacle Detection Performance at Different Translational Velocities
4.2. Obstacle Reconstruction
4.3. Improvement Evaluation
5. Discussion and Conclusions
Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borenstein, J.; Everett, H.R.; Feng, L.; Wehe, D. Mobile robot positioning: Sensors and techniques. J. Robot. Syst. 1997, 14, 231–249. [Google Scholar] [CrossRef]
- de Jesús Rubio, J.; Aquino, V.; Figueroa, M. Inverse kinematics of a mobile robot. Neural Comput. Appl. 2013, 23, 187–194. [Google Scholar] [CrossRef]
- Sousa, R.B.; Petry, M.R.; Moreira, A.P. Evolution of Odometry Calibration Methods for Ground Mobile Robots. In Proceedings of the IEEE International Conference on Autonomous Robot Systems and Competitions, Ponta Delgada, Portugal, 15–17 April 2020; pp. 294–299. [Google Scholar] [CrossRef]
- Hijikata, M.; Miyagusuku, R.; Ozaki, K. Wheel Arrangement of Four Omni Wheel Mobile Robot for Compactness. Appl. Sci. 2022, 12, 5798. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Clotet, E. Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories. Appl. Sci. 2022, 12, 2606. [Google Scholar] [CrossRef]
- Maddahi, Y.; Maddahi, A.; Sepehri, N. Calibration of omnidirectional wheeled mobile robots: Method and experiments. Robotica 2013, 31, 969–980. [Google Scholar] [CrossRef]
- Lin, P.; Liu, D.; Yang, D.; Zou, Q.; Du, Y.; Cong, M. Calibration for Odometry of Omnidirectional Mobile Robots Based on Kinematic Correction. In Proceedings of the 14th International Conference on Computer Science & Education (ICCSE), Toronto, ON, Canada, 19–21 August 2019; pp. 139–144. [Google Scholar] [CrossRef]
- Maulana, E.; Muslim, M.A.; Hendrayawan, V. Inverse kinematic implementation of four-wheels mecanum drive mobile robot using stepper motors. In Proceedings of the 2015 International Seminar on Intelligent Technology and Its Applications, Surabaya, Indonesia, 20–21 May 2015; pp. 51–56. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, M.; Liu, S.; Ge, J.; Gu, C. Research and development of mecanum-wheeled omnidirectional mobile robot implemented by multiple control methods. In Proceedings of the International Conference on Mechatronics and Machine Vision in Practice, Nanjing, China, 28–30 November 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Li, Y.; Ge, S.; Dai, S.; Zhao, L.; Yan, X.; Zheng, Y.; Shi, Y. Kinematic Modeling of a Combined System of Multiple Mecanum-Wheeled Robots with Velocity Compensation. Sensors 2020, 20, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savaee, E.; Hanzaki, A.R. A New Algorithm for Calibration of an Omni-Directional Wheeled Mobile Robot Based on Effective Kinematic Parameters Estimation. J. Intell. Robot. Syst. 2021, 101, 28. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Bitrià, R.; Clotet, E. Non-Parametric Calibration of the Inverse Kinematic Matrix of a Three-Wheeled Omnidirectional Mobile Robot Based on Genetic Algorithms. Appl. Sci. 2023, 13, 1053. [Google Scholar] [CrossRef]
- Reina, G.; Ojeda, L.; Milella, A.; Borenstein, J. Wheel slippage and sinkage detection for planetary rovers. IEEE/ASME Trans. Mechatron. 2006, 11, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Cho, B.S.; Moon, W.S.; Seo, W.J.; Baek, K.R. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding. J. Mech. Sci. Technol. 2011, 25, 2907–2917. [Google Scholar] [CrossRef]
- Jin, J.; Chung, W. Obstacle Avoidance of Two-Wheel Differential Robots Considering the Uncertainty of Robot Motion on the Basis of Encoder Odometry Information. Sensors 2019, 19, 289. [Google Scholar] [CrossRef] [Green Version]
- Palacín, J.; Martínez, D. Improving the Angular Velocity Measured with a Low-Cost Magnetic Rotary Encoder Attached to a Brushed DC Motor by Compensating Magnet and Hall-Effect Sensor Misalignments. Sensors 2021, 21, 4763. [Google Scholar] [CrossRef]
- Aqel, M.O.A.; Marhaban, M.H.; Saripan, M.I.; Ismail, N.B. Review of visual odometry: Types, approaches, challenges, and applications. SpringerPlus 2016, 5, 1897. [Google Scholar] [CrossRef] [Green Version]
- Bârsan, I.A.; Liu, P.; Pollefeys, M.; Geiger, A. Robust dense mapping for large-scale dynamic environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia, 21–25 May 2018; pp. 7510–7517. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.; Chen, H.; Di, H.; Gong, J.; Xiong, G.; Qi, J.; Yi, T. CPFG-SLAM: A robust simultaneous localization and mapping based on LIDAR in off-road environment. In Proceedings of the IEEE Intelligent Vehicles Symposium, Changshu, China, 26–30 June 2018; pp. 650–655. [Google Scholar] [CrossRef]
- Du, S.; Li, Y.; Li, X.; Wu, M. LiDAR Odometry and Mapping Based on Semantic Information for Outdoor Environment. Remote Sens. 2021, 13, 2864. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G. Object modeling by registration of multiple range images. IEEE Int. Conf. Robot. Autom. 1991, 3, 2724–2729. [Google Scholar] [CrossRef]
- Yokozuka, M.; Koide, K.; Oishi, S.; Banno, A. LiTAMIN: LiDAR-Based Tracking and Mapping by Stabilized ICP for Geometry Approximation with Normal Distributions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5143–5150. [Google Scholar] [CrossRef]
- Koide, K.; Miura, J.; Menegatti, E. A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement. Int. J. Adv. Robot. Syst. 2019, 1–16. [Google Scholar] [CrossRef]
- Behley, J.; Stachniss, C. Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments. In Proceedings of the International Conference on Robotics: Science and Systems (RSS), Pittsburgh, Pennsylvania, USA, 26–30 June 2018. [Google Scholar] [CrossRef]
- Park, C.; Moghadam, P.; Kim, S.; Elfes, A.; Fookes, C.; Sridharan, S. Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM. In Proceedings of the International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2017. [Google Scholar] [CrossRef]
- Whelan, T.; Leutenegger, S.; Moreno, R.; Glocker, B.; Davison, A. ElasticFusion: Dense SLAM Without A Pose Graph. In Proceedings of the International Conference of Robotics: Science and Systems (RSS), Rome, Italy, 13–17 July 2015. [Google Scholar] [CrossRef]
- Moosmann, F.; Stiller, C. Velodyne SLAM. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011. [Google Scholar] [CrossRef]
- Droeschel, D.; Behnke, S. Efficient Continuous-time SLAM for 3D Lidar-based Online Mapping. In Proceedings of the International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018. [Google Scholar] [CrossRef] [Green Version]
- Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the International Conference of Robotics: Science and Systems (RSS), Berkeley, CA, USA, 12–16 July 2014. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. Low-drift and Real-time Lidar Odometry and Mapping. Auton. Robot. 2017, 41, 401–416. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar] [CrossRef]
- Ye, H.; Chen, Y.; Liu, M. Tightly Coupled 3D Lidar Inertial Odometry and Mapping. In Proceedings of the International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150. [Google Scholar] [CrossRef] [Green Version]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar] [CrossRef]
- Qin, C.; Ye, H.; Pranata, C.E.; Han, J.; Zhang, S.; Liu, M. LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Virtual (Online), 31 May–31 August 2020. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics. Found. Trends Robot. 2015, 4, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Palacín, J.; Martínez, D.; Rubies, E.; Clotet, E. Mobile Robot Self-Localization with 2D Push-Broom LIDAR in a 2D Map. Sensors 2020, 20, 2500. [Google Scholar] [CrossRef]
- Bhandari, V.; Phillips, T.G.; McAree, P.R. Real-Time 6-DOF Pose Estimation of Known Geometries in Point Cloud Data. Sensors 2023, 23, 3085. [Google Scholar] [CrossRef]
- He, Y.; Liang, B.; Yang, J.; Li, S.; He, J. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors 2017, 17, 1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.; Jeon, M.; Kim, C.; Seo, S.-W.; Kim, S.-W. Uncertaintyaware fast curb detection using convolutional networks in point clouds. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 12882–12888. [Google Scholar] [CrossRef]
- Zheng, C.; Lyu, Y.; Li, M.; Zhang, Z. Lodonet: A deep neural network with 2d keypoint matching for 3d lidar odometry estimation. In Proceedings of the ACM International Conference on Multimedia, Virtual Conference, 12–16 October 2020; pp. 2391–2399. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N. Dmlo: Deep matching lidar odometry. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Virtual Conference, 25–29 October 2020; pp. 6010–6017. [Google Scholar] [CrossRef]
- Li, Q.; Chen, S.; Wang, C.; Li, X.; Wen, C.; Cheng, M.; Li, J. Lonet: Deep real-time lidar odometry. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8473–8482. [Google Scholar] [CrossRef]
- Nubert, J.; Khattak, S.; Hutter, M. Self-supervised learning of lidar odometry for robotic applications. In Proceedings of the IEEE International Conference on Robotics and Automation 2021, Motreal, QC, Canada, 20–24 May 2019; pp. 9601–9607. [Google Scholar] [CrossRef]
- Wang, M.; Saputra, R.U.; Zhao, P.; Gusmao, P.; Yang, B.; Chen, C.; Markham, A.; Trigoni, N. Deeppco: End-to-end point cloud odometry through deep parallel neural network. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2019, Macau, China, 4–8 November 2019; pp. 3248–3254. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, G.; Kim, A. Unsupervised geometry-aware deep lidar odometry. In Proceedings of the IEEE International Conference on Robotics and Automation 2020, Paris, France, 31 May–31 August 2020; pp. 2145–2152. [Google Scholar] [CrossRef]
- Wang, G.; Wu, X.; Liu, Z.; Wang, H. Pwclo-net: Deep lidar odometry in 3d point clouds using hierarchical embedding mask optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual Conference, 19–25 June 2021; pp. 15910–15919. [Google Scholar] [CrossRef]
- Jung, D.; Cho, J.-K.; Jung, Y.; Shin, S.; Kim, S.-W. LoRCoN-LO: Long-term Recurrent Convolutional Network-based LiDAR Odometry. In Proceedings of the International Conference on Electronics, Information, and Communication, Singapore, 5–8 February 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–20 May 2016; pp. 1271–1278. [Google Scholar] [CrossRef]
- Lluvia, I.; Lazkano, E.; Ansuategi, A. Active Mapping and Robot Exploration: A Survey. Sensors 2021, 21, 2445. [Google Scholar] [CrossRef] [PubMed]
- Nagla, S. 2D Hector SLAM of Indoor Mobile Robot using 2D LIDAR. In Proceedings of the International Conference on Power, Energy, Control 472 and Transmission Systems (ICPECTS), Chennai, India, 10–11 December 2020. [Google Scholar] [CrossRef]
- Tee, Y.K.; Han, Y.C. Lidar-Based 2D SLAM for Mobile Robot in an Indoor Environment: A Review. In Proceedings of the International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri, Malaysia, 7–9 July 2021; p. 475. [Google Scholar] [CrossRef]
- Mendes, E.; Koch, P.; Lacroix, S. ICP-based pose-graph SLAM. In Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016; pp. 195–200. [Google Scholar] [CrossRef] [Green Version]
- Guiotte, F.; Lefèvre, S.; Corpetti, T. Attribute Filtering of Urban Point Clouds Using Max-Tree on Voxel Data. In Mathematical Morphology and Its Applications to Signal and Image Processing; Lecture Notes in Computer Science; Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B., Eds.; Springer: Cham, Switzerland, 2019; Volume 11564. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Xu, W.; Liu, X.; Hong, X.; Zhang, F. Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry. IEEE Robot. Autom. Lett. 2022, 7, 8518–8525. [Google Scholar] [CrossRef]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the International Conference on 3D Digital Imaging and Modeling (3DIM), Quebec City, QC, Canada, 28 May–1 June 2001. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991, 7, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Sezer, V.; Gokasan, M. A novel obstacle avoidance algorithm: “Follow the Gap Method”. Robot. Auton. Syst. 2012, 60, 1123–1134. [Google Scholar] [CrossRef]
- Rostami, S.M.H.; Sangaiah, A.K.; Wang, J.; Liu, X. Obstacle avoidance of mobile robots using modified artificial potential field algorithm. J. Wirel. Com. Netw. 2019, 2019, 70. [Google Scholar] [CrossRef] [Green Version]
- SLAMICP: C++ Library for Iterative Closest Point Matching. Available online: http://robotica.udl.cat/slamicp/ (accessed on 30 June 2023).
- LIBICP: C++ Library for Iterative Closest Point Matching. Available online: https://www.cvlibs.net/software/libicp/ (accessed on 17 March 2023).
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? In Proceedings of the KITTI Vision Benchmark Suite, Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 26 July 2012. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- KITTI Vision Benchmark Suite. Available online: https://www.cvlibs.net/datasets/kitti/ (accessed on 17 March 2023).
- GNU General Public License. Available online: https://www.gnu.org/licenses/gpl-3.0.html (accessed on 17 April 2023).
- Palacín, J.; Rubies, E.; Clotet, E. The Assistant Personal Robot Project: From the APR-01 to the APR-02 Mobile Robot Prototypes. Designs 2022, 6, 66. [Google Scholar] [CrossRef]
- Palacín, J.; Martínez, D.; Clotet, E.; Pallejà, T.; Burgués, J.; Fonollosa, J.; Pardo, A.; Marco, S. Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection. Sensors 2019, 19, 1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubies, E.; Palacín, J.; Clotet, E. Enhancing the Sense of Attention from an Assistance Mobile Robot by Improving Eye-Gaze Contact from Its Iconic Face Displayed on a Flat Screen. Sensors 2022, 22, 4282. [Google Scholar] [CrossRef] [PubMed]
- Rubies, E.; Palacín, J. Design and FDM/FFF Implementation of a Compact Omnidirectional Wheel for a Mobile Robot and Assessment of ABS and PLA Printing Materials. Robotics 2020, 9, 43. [Google Scholar] [CrossRef]
- Bitriá, R.; Palacín, J. Optimal PID Control of a Brushed DC Motor with an Embedded Low-Cost Magnetic Quadrature Encoder for Improved Step Overshoot and Undershoot Responses in a Mobile Robot Application. Sensors 2022, 22, 7817. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping: Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Eade, E.; Fong, P.; Munich, M.E. Monocular graph SLAM with complexity reduction. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 3017–3024. [Google Scholar] [CrossRef]
- Louis, J. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]
- Boost C++ Libraries. Available online: Boost.org (accessed on 26 January 2023).
- Chetverikov, D.; Svirko, D.; Stepanov, D.; Krsek, P. The Trimmed Iterative Closest Point algorithm. In Proceedings of the International Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002; Volume 3, pp. 545–548. [Google Scholar] [CrossRef]
- Sánchez-Ibáñez, J.R.; Pérez-del-Pulgar, C.J.; García-Cerezo, A. Path Planning for Autonomous Mobile Robots: A Review. Sensors 2021, 21, 7898. [Google Scholar] [CrossRef] [PubMed]
- Palacín, J.; Rubies, E.; Clotet, E.; Martínez, D. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant. Sensors 2021, 21, 7216. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, K.; Shao, L.; Lin, Q.; Hua, Y.; Qin, J. Clustering Denoising of 2D LiDAR Scanning in Indoor Environment Based on Keyframe Extraction. Sensors 2023, 23, 18. [Google Scholar] [CrossRef]
- Charron, N.; Phillips, S.; Waslander, S.L. De-noising of Lidar Point Clouds Corrupted by Snowfall. In Proceedings of the Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, 8–10 May 2018; pp. 254–261. [Google Scholar] [CrossRef]
- Banerjee, N.; Lisin, D.; Lenser, S.R.; Briggs, J.; Baravalle, R.; Albanese, V.; Chen, Y.; Karimian, A.; Ramaswamy, T.; Pilotti, P.; et al. Lifelong mapping in the wild: Novel strategies for ensuring map stability and accuracy over time evaluated on thousands of robots. Robot. Auton. Syst. 2023, 164, 104403. [Google Scholar] [CrossRef]
- Hector SLAM. Available online: http://wiki.ros.org/hector_slam (accessed on 30 June 2023).
- Cartographer. Available online: https://github.com/cartographer-project/cartographer (accessed on 30 June 2023).
- Minguez, J.; Lamiraux, F.; Montesano, L. Metric-Based Scan Matching Algorithms for Mobile Robot Displacement Estimation. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 3557–3563. [Google Scholar] [CrossRef] [Green Version]
- Montesano, L.; Minguez, J.; Montano, L.A. Lessons Learned in Integration for Sensor-Based Robot Navigation Systems. Int. J. Adv. Robot. Syst. 2006, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Kim, H.; Myung, H. GPU-based real-time RGB-D 3D SLAM. In Proceedings of the International Conference on Ubiquitous Robots and Ambient Intelligence, Daejeon, Republic of Korea, 26–28 November 2012; pp. 46–48. [Google Scholar] [CrossRef]
- Ratter, A.; Sammut, C.; McGill, M. GPU accelerated graph SLAM and occupancy voxel based ICP for encoder-free mobile robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 540–547. [Google Scholar] [CrossRef]
- Aldegheri, S.; Bombieri, N.; Bloisi, D.D.; Farinelli, A. Data Flow ORB-SLAM for Real-time Performance on Embedded GPU Boards. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November 2019; pp. 5370–5375. [Google Scholar] [CrossRef]
- Bavle, H.; Sanchez-Lopez, J.L.; Cimarelli, C.; Tourani, A.; Voos, H. From SLAM to Situational Awareness: Challenges and Survey. Sensors 2023, 23, 4849. [Google Scholar] [CrossRef] [PubMed]
Obstacle | Trajectory Experiments | Maximum Number of Outliers Detected | LIBICP [62]: (ms) | This Work: (ms) | Improvement |
---|---|---|---|---|---|
A1 | 3 | 82 | 71.06 | 45.33 | 36.21% |
A2 | 3 | 45 | 69.29 | 43.71 | 36.92% |
A3 | 3 | 24 | 70.48 | 44.43 | 36.96% |
B1 | 3 | 41 | 70.52 | 44.58 | 36.78% |
B2 | 3 | 29 | 68.78 | 43.39 | 36.91% |
B3 | 3 | 43 | 70.49 | 44.64 | 36.67% |
C1 | 3 | 23 | 71.36 | 44.66 | 37.42% |
C2 | 3 | 12 | 70.56 | 44.41 | 37.06% |
C3 | 3 | 44 | 70.52 | 44.45 | 36.97% |
D1 | 3 | 63 | 70.33 | 45.01 | 36.00% |
D2 | 3 | 44 | 70.51 | 44.74 | 36.55% |
D3 | 3 | 123 | 70.35 | 44.61 | 36.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clotet, E.; Palacín, J. SLAMICP Library: Accelerating Obstacle Detection in Mobile Robot Navigation via Outlier Monitoring following ICP Localization. Sensors 2023, 23, 6841. https://doi.org/10.3390/s23156841
Clotet E, Palacín J. SLAMICP Library: Accelerating Obstacle Detection in Mobile Robot Navigation via Outlier Monitoring following ICP Localization. Sensors. 2023; 23(15):6841. https://doi.org/10.3390/s23156841
Chicago/Turabian StyleClotet, Eduard, and Jordi Palacín. 2023. "SLAMICP Library: Accelerating Obstacle Detection in Mobile Robot Navigation via Outlier Monitoring following ICP Localization" Sensors 23, no. 15: 6841. https://doi.org/10.3390/s23156841
APA StyleClotet, E., & Palacín, J. (2023). SLAMICP Library: Accelerating Obstacle Detection in Mobile Robot Navigation via Outlier Monitoring following ICP Localization. Sensors, 23(15), 6841. https://doi.org/10.3390/s23156841