Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection
<p>Image of the assistant personal robot (APR-02) and detail of the array of metal-oxide (MOX) gas sensors used for early gas leakage detection.</p> "> Figure 2
<p>(<b>a</b>) Distribution of the MOX sensors included in the electronic board: FIGARO TGS 2600 (blue: 1, 8, 12, 16), FIGARO TGS 2602 (orange: 2, 7, 11, 15), FIGARO TGS 2611 (green: 3, 6, 10, 14), FIGARO TGS 2620 (red: 4, 5, 9, 13). (<b>b</b>) Enclosure of the sensor array integrated with the APR (160 × 60 × 50 mm).</p> "> Figure 3
<p>Odor delivery system: (<b>a</b>) photo; (<b>b</b>) schematic.</p> "> Figure 4
<p>Detail of the experimentation arena and representation of the air circulation.</p> "> Figure 5
<p>Measured sensor conductance obtained with the 16-element MOX sensor array when the APR traveled through the arena and reached the gas plume for ethanol and acetone.</p> "> Figure 6
<p>Projection of two validation runs with one gas source (crosses and squares) into the partial least squares discriminant analysis (PLS-DA) score plot of calibration data (filled circles). The validation data are colored according to the label given by the classifier.</p> "> Figure 7
<p>Results of exploration with one gas source of ethanol (Scenario I). From top to bottom: map of the arena (built by the robot) and output of the PLS-DA classifier overlaid on the robot trajectory; concentration measured by the photo-ionization detector (PID); conductance of the matrix of MOX gas sensors; output of the PLS-DA classifier and mean sensor array response (analog-to-digital converter (ADC) value) (for visual clarity, we added a threshold that indicates the mean array response during the commutation from air to ethanol). The red dotted line indicates the point of closest approximation to the gas source.</p> "> Figure 8
<p>Results of exploration with one gas source of acetone (Scenario I). From top to bottom: map of the arena (built by the robot) and mean sensor array response overlaid on the robot trajectory; concentration measured by the PID; conductance of the matrix of MOX gas sensors; output of the PLS-DA classifier and mean sensor array response (ADC value) (for visual clarity, we added a threshold that indicates the mean array response during the commutation from air to ethanol). The red dotted line indicates the point of closest approximation to the gas source.</p> "> Figure 9
<p>Results of exploration with one gas source of acetone and heating, ventilation, and air conditioning (HVAC) turned off (Scenario II). Map of the arena (built by the robot) and mean sensor array response overlaid on the robot trajectory.</p> "> Figure 10
<p>Results of exploration with two gas sources (ethanol and acetone) and HVAC turned off (Scenario III). Top: map of the arena (built by the robot) and mean sensor array response overlaid on the robot trajectory using two colors based on the classifier output (red for ethanol and cyan for acetone); bottom: output of the PLS-DA classifier and mean sensor array response (for visual clarity, we added a threshold that indicates the mean array response during the commutation from air to ethanol).</p> "> Figure 10 Cont.
<p>Results of exploration with two gas sources (ethanol and acetone) and HVAC turned off (Scenario III). Top: map of the arena (built by the robot) and mean sensor array response overlaid on the robot trajectory using two colors based on the classifier output (red for ethanol and cyan for acetone); bottom: output of the PLS-DA classifier and mean sensor array response (for visual clarity, we added a threshold that indicates the mean array response during the commutation from air to ethanol).</p> "> Figure 11
<p>Results of exploration with an ethanol gas source inside a closed room and HVAC turned on (Scenario IV). Top: map of the arena (built by the robot) and mean sensor array response overlaid on the robot trajectory; bottom: map of the arena (built by the robot) and PID response overlaid on the robot trajectory.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Assistant Personal Robot
2.2. Gas Sensor Array
2.3. Odor Delivery System
2.4. Experimental Area
2.5. Measurement Campaigns
2.6. PLS-DA Classifier
3. Results and Discussion
3.1. Signals Acquired in the First Measurement Campaign
3.2. Calibration of the PLS-DA Classifier
3.3. Scenario I: One Gas Source and HVAC Turned On
3.4. Scenario II: One Gas Source and HVAC Turned Off
3.5. Scenario III: Two Gas Sources and HVAC Switched Off
3.6. Scenario IV: Gas Leak Inside a Door-Closed Room and HVAC Turned On
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Martinez, D.; Teixidó, M.; Font, D.; Moreno, J.; Tresanchez, M.; Marco, S.; Palacín, J. Ambient intelligence application based on environmental measurements performed with an assistant mobile robot. Sensors 2014, 14, 6045–6055. [Google Scholar] [CrossRef]
- Palacín, J.; Clotet, E.; Martínez, D.; Moreno, J.; Tresanchez, M. Automatic Supervision of Temperature, Humidity, and Luminance with an Assistant Personal Robot. J. Sens. 2017, 1480401. [Google Scholar] [CrossRef]
- Jin, M.; Liu, S.; Schiavon, S.; Spanos, C. Automated mobile sensing: Towards high-granularity agile indoor environmental quality monitoring. Build. Environ. 2018, 128, 268–276. [Google Scholar] [CrossRef]
- Reggente, M.; Mondini, A.; Ferri, G.; Mazzolait, B.; Manzi, A.; Gabelletti, M.; Dario, P.; Lilienthal, A.J. The DustBot System: Using Mobile Robots to Monitor Pollution in Pedestrian Area. Chem. Eng. Trans. 2010, 23, 273–278. [Google Scholar]
- Soldan, S.; Bono, G.; Kroll, A. RoboGasInspector—A Mobile Robotic System for Remote Leak Sensing and Localization in Large Industrial Environments: Overview and First Results. IFAC Proc. Vol. 2012, 45, 33–38. [Google Scholar] [CrossRef]
- Hernandez, V.; Lilienthal, A.J.; Neumann, P.P.; Trincavelli, M. Mobile robots for localizing gas emission sources on landfill sites: Is bio-inspiration the way to go? Front. Neuroeng. 2012, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Brunelli, D.; Adami, A.; Lorenzelli, L.; Menna, F.; Remondino, F. Gas-Drone: Portable gas sensing system on UAVs for gas leakage localization. In Proceedings of the 2014 IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 1431–1434. [Google Scholar] [CrossRef]
- Gallego, V.; Rossi, M.; Brunelli, D. Unmanned aerial gas leakage localization and mapping using microdrones. In Proceedings of the 2015 IEEE Sensors Applications Symposium, Zadar, Croatia, 13–15 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Rossi, M.; Brunelli, D. Autonomous Gas Detection and Mapping with Unmanned Aerial Vehicles. IEEE Trans. Instrum. Meas. 2016, 765–775. [Google Scholar] [CrossRef]
- Kowadlo, G.; Russell, R.A. Robot Odor Localization: A Taxonomy and Survey. Int. J. Robot. Res. 2008, 27, 869–894. [Google Scholar] [CrossRef]
- Monroy, J.; Gonzalez-Jimenez, J. Towards Odor-Sensitive Mobile Robots—Electronic Nose Technologies and Advances in Machine Olfaction. IGI Glob. 2018, 244–263. [Google Scholar] [CrossRef]
- Monroy, J.; Ruiz-Sarmiento, J.-R.; Moreno, F.-A.; Melendez-Fernandez, F.; Galindo, C.; Gonzalez-Jimenez, J. A Semantic-Based Gas Source Localization with a Mobile Robot Combining Vision and Chemical Sensing. Sensors 2018, 18, 4174. [Google Scholar] [CrossRef]
- Sanchez-Garrido, C.; Monroy, J.; Gonzalez-Jimenez, J. Probabilistic Estimation of the Gas Source Location in Indoor Environments by Combining Gas and Wind Observations. Appl. Intell. Syst. 2018, 310, 110–121. [Google Scholar] [CrossRef]
- Li, J.-G.; Meng, Q.-H.; Wang, Y.; Zeng, M. Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Auton. Robots 2011, 30, 281–292. [Google Scholar] [CrossRef]
- Bennetts, V.H.; Schaffernicht, E.; Lilienthal, A.J.; Trincavelli, M. Robot Assisted Gas Tomography—Localizing Methane Leaks in Outdoor Environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; pp. 6362–6367. [Google Scholar] [CrossRef]
- Lilienthal, A.J.; Duckett, T. Building gas concentration gridmaps with a mobile robot. Robot. Auton. Syst. 2004, 48, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Loutfi, A.; Coradeschi, S.; Lilienthal, A.J.; Gonzalez, J. Gas Distribution Mapping of Multiple Odour Sources using a Mobile Robot. Robotica 2009, 27, 311–319. [Google Scholar] [CrossRef]
- Hernandez, V.; Lilienthal, A.J.; Trincavelli, M. Creating true gas concentration maps in presence of multiple heterogeneous gas sources. In Proceedings of the Conference IEEE Sensors 2012, Taipei, Taiwan, 28–31 October 2012. [Google Scholar] [CrossRef]
- Burgués, J.; Hernández, V.; Lilienthal, A.J.; Marco, S. Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping. Sensors 2019, 19, 478. [Google Scholar] [CrossRef]
- Monroy, J.G.; Blanco, J.L.; Gonzalez-Jimenez, J. Time-variant gas distribution mapping with obstacle information. Auton. Robots 2016, 40, 1–16. [Google Scholar] [CrossRef]
- Monroy, J.G.; Gonzalez-Jimenez, J. Gas classification in motion: An experimental analysis. Sens. Actuators B Chem. 2017, 240, 1205–1215. [Google Scholar] [CrossRef]
- Burgués, J.; Jiménez-Soto, J.M.; Marco, S. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models. Anal. Chim. Acta 2018, 1013, 13–25. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors. Sensors 2018, 18, 339. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [Green Version]
- Jiu, H.F.; Pang, S.; Li, J.L.; Han, B. Odor plume source localization with a Pioneer 3 Mobile Robot in an indoor airflow environment. In Proceedings of the IEEE SOUTHEASTCON 2014, Lexington, KY, USA, 13–16 March 2014. [Google Scholar] [CrossRef]
- Bennetts, V.H.; Schaffernicht, E.; Pomareda, V.; Lilienthal, A.J.; Marco, S.; Trincavelli, M. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds. Sensors 2014, 14, 17331–17352. [Google Scholar] [CrossRef]
- Clotet, E.; Martínez, D.; Moreno, J.; Tresanchez, M.; Palacín, J. Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot. Sensors 2016, 16, 610. [Google Scholar] [CrossRef]
- Palacín, J.; Clotet, E.; Martínez, D.; Martínez, D.; Moreno, J. Design, Extending the Application of an Assistant Personal Robot as a Walk-Helper Tool. Robotics 2019, 8, 27. [Google Scholar] [CrossRef]
- Sánchez-Sosa, J.E.; Castillo-Mixcóatl, J.; Beltrán-Pérez, G.; Muñoz-Aguirre, S. An Application of the Gaussian Plume Model to Localization of an Indoor Gas Source with a Mobile Robot. Sensors 2018, 18, 4375. [Google Scholar] [CrossRef]
- Moreno, J.; Clotet, E.; Lupiañez, R.; Tresanchez, M.; Martínez, D.; Pallejà, T.; Casanovas, J.; Palacín, J. Design, Implementation and Validation of the Three-Wheel Holonomic Motion System of the Assistant Personal Robot (APR). Sensors 2016, 16, 1658. [Google Scholar] [CrossRef]
- Moreno, J.; Clotet, E.; Tresanchez, M.; Martínez, D.; Casanovas, J.; Palacín, J. Measurement of Vibrations in Two Tower-Typed Assistant Personal Robot Implementations with and without a Passive Suspension System. Sensors 2017, 17, 1122. [Google Scholar] [CrossRef]
- Martínez, D.; Clotet, E.; Moreno, J.; Tresanchez, M.; Palacín, J. A Proposal of a Multi-agent System Implementation for the Control of an Assistant Personal Robot. In Advances in Intelligent Systems and Computing (AISC 473), Trends in Practical Applications of Scalable Multi-Agent Systems; Springer: Berlin/Heidelberg, Germany, 2016; Volume 473, pp. 171–179. [Google Scholar]
- Thrun, S. Robotic mapping: A survey. In Exploring Artificial Intelligence in the New Millennium; Morgan Kaufmann: Burlington, MA, USA, 2002; pp. 1–35. [Google Scholar]
- Boal, J.; Sánchez-Miralles, Á.; Arranz, Á. Topological simultaneous localization and mapping: A survey. Robotica 2014, 32, 803–821. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Peng, C.-C.; Ravankar, A.A.; Ravankar, A. A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm. Sensors 2018, 18, 1294. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Yang, D.; Xu, B.; Rao, K.; Sheng, W. Passive Infrared (PIR)-Based Indoor Position Tracking for Smart Homes Using Accessibility Maps and A-Star Algorithm. Sensors 2018, 18, 332. [Google Scholar] [CrossRef]
- Martínez, D.; Moreno, J.; Tresanchez, M.; Clotet, E.; Jiménez-Soto, J.M.; Magrans, R.; Pardo, A.; Marco, S.; Palacín, J. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot. J. Sens. 2016, 7184980. [Google Scholar] [CrossRef]
- Pomareda, V.; Magrans, R.; Jiménez-Soto, J.M.; Martínez, D.; Tresánchez, M.; Burgués, J.; Palacín, J.; Marco, S. Chemical Source Localization Fusing Concentration Information in the Presence of Chemical Background Noise. Sensors 2017, 17, 904. [Google Scholar] [CrossRef]
- Fonollosa, J.; Rodríguez-Luján, I.; Trincavelli, M.; Vergara, A.; Huerta, R. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry. Sensors 2014, 14, 19336–19353. [Google Scholar] [CrossRef] [Green Version]
- Madrolle, S.; Grangeat, P.; Jutten, C. A Linear-Quadratic Model for the Quantification of a Mixture of Two Diluted Gases with a Single Metal Oxide Sensor. Sensors 2018, 18, 1785. [Google Scholar] [CrossRef]
- Fonollosa, J.; Fernández, L.; Gutiérrez-Gálvez, A.; Huerta, R.; Marco, S. Calibration transfer and drift counteraction in chemical sensor arrays using Direct Standardization. Sens. Actuators B Chem. 2016, 236, 1044–1053. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Brunelli, D. Ultra low power Wireless Gas Sensor Network for environmental monitoring applications. In Proceedings of the IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), Perugia, Italy, 28 September 2012; pp. 75–81. [Google Scholar] [CrossRef]
- Jeličić, V.; Magno, M.; Paci, G.; Brunelli, D.; Benini, L. Design, characterization and management of a wireless sensor network for smart gas monitoring. In Proceedings of the 2011 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Savelletri di Fasano, Italy, 28–29 June 2011; pp. 115–120. [Google Scholar] [CrossRef]
- Rossi, M.; Brunelli, D. Analyzing the transient response of MOX gas sensors to improve the lifetime of distributed sensing systems. In Proceedings of the 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI, Bari, Italy, 13–14 June 2013; pp. 211–216. [Google Scholar] [CrossRef]
- Brunelli, D.; Rossi, M. Enhancing lifetime of WSN for natural gas leakages detection. Microelectron. J. 2014, 1665–1670. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors. Anal. Chim. Acta 2018, 1019, 49–64. [Google Scholar] [CrossRef]
ID | Sensor | PWM Channel | Duty Cycle |
---|---|---|---|
1 | TGS 2600 | 1 | 25% |
2 | TGS 2602 | 1 | 25% |
3 | TGS 2611 | 1 | 25% |
4 | TGS 2620 | 1 | 25% |
5 | TGS 2620 | 2 | 50% |
6 | TGS 2611 | 2 | 50% |
7 | TGS 2602 | 2 | 50% |
8 | TGS 2600 | 2 | 50% |
9 | TGS 2620 | 3 | 75% |
10 | TGS 2611 | 3 | 75% |
11 | TGS 2602 | 3 | 75% |
12 | TGS 2600 | 3 | 75% |
13 | TGS 2620 | 4 | 62.5% |
14 | TGS 2611 | 4 | 62.5% |
15 | TGS 2602 | 4 | 62.5% |
16 | TGS 2600 | 4 | 62.5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacín, J.; Martínez, D.; Clotet, E.; Pallejà, T.; Burgués, J.; Fonollosa, J.; Pardo, A.; Marco, S. Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection. Sensors 2019, 19, 1957. https://doi.org/10.3390/s19091957
Palacín J, Martínez D, Clotet E, Pallejà T, Burgués J, Fonollosa J, Pardo A, Marco S. Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection. Sensors. 2019; 19(9):1957. https://doi.org/10.3390/s19091957
Chicago/Turabian StylePalacín, Jordi, David Martínez, Eduard Clotet, Tomàs Pallejà, Javier Burgués, Jordi Fonollosa, Antonio Pardo, and Santiago Marco. 2019. "Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection" Sensors 19, no. 9: 1957. https://doi.org/10.3390/s19091957
APA StylePalacín, J., Martínez, D., Clotet, E., Pallejà, T., Burgués, J., Fonollosa, J., Pardo, A., & Marco, S. (2019). Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection. Sensors, 19(9), 1957. https://doi.org/10.3390/s19091957