Suction Influence on Load–Settlement Curves Predicted by DMT in a Collapsible Sandy Soil
<p>Parts of inundation device and system attached to the DMT blade. Adapted from [<a href="#B32-sensors-23-01429" class="html-bibr">32</a>].</p> "> Figure 2
<p>Schematic representation of the DMT test with the inundation device. Adapted from [<a href="#B32-sensors-23-01429" class="html-bibr">32</a>].</p> "> Figure 3
<p>Schematic representation of DMT inundation process, (<b>a</b>) test under natural condition, (<b>b</b>) depth of interest; (<b>c</b>) local inundation and (<b>d</b>) readings under inundated condition. Adapted from [<a href="#B32-sensors-23-01429" class="html-bibr">32</a>].</p> "> Figure 4
<p>Equipment and setup for the plate load tests carried out at the site.</p> "> Figure 5
<p>(<b>a</b>) Base of the pit prior to the inundation, (<b>b</b>) test assembled prior to the inundation, (<b>c</b>) process of inundation and (<b>d</b>) PLT carried out under inundated condition.</p> "> Figure 6
<p>In situ and laboratory tests previously carried out in the experimental site. Adapted from [<a href="#B38-sensors-23-01429" class="html-bibr">38</a>,<a href="#B39-sensors-23-01429" class="html-bibr">39</a>].</p> "> Figure 7
<p>Suction monitoring by granular matrix sensors and precipitation data.</p> "> Figure 8
<p>Average profile as well as plus and minus one standard deviation (<span class="html-italic">SD</span>) of <span class="html-italic">I<sub>D</sub></span>, <span class="html-italic">K<sub>D</sub></span>, and <span class="html-italic">E<sub>D</sub></span> determined in natural conditions.</p> "> Figure 9
<p><span class="html-italic">I<sub>D</sub></span>, <span class="html-italic">K<sub>D</sub></span>, and <span class="html-italic">E<sub>D</sub></span> profiles obtained after local inundation and average profile for the natural condition.</p> "> Figure 10
<p>Constrained modulus values determined from the DMT, oedometer test and PLT, under natural and inundated condition for the study site.</p> "> Figure 11
<p>Load–settlement curves measured by PLT and predicted by DMT results, under natural and inundated conditions, for 1.0, 2.0, 3.0, and 4.0 m depth.</p> "> Figure 12
<p>Settlements estimated from DMT vs. those obtained by PLT for the natural (<b>a</b>) and inundated (<b>b</b>) conditions of the study site.</p> ">
Abstract
:1. Introduction
2. Flat Dilatometer Tests (DMT)
2.1. Test Description and Interpretation
2.2. Load–Settlement Curve Prediction from DMT
- Use the DMT results data and empirical correlations to obtain the intermediate parameters along the depth;
- Calculate the constrained modulus (MDMT) along the zone of influence of the plate, plausibly adopted equal to 2B (two times the plate width);
- Calculate the stress applied to the footing (qapp) by Equation (5):
- 4.
- Assume C = 0.42, according to Décourt [31];
- 5.
- For the DMT working condition (s/B = 1.8%), assume the relation qapp/quc is equal to 0.486;
- 6.
- Calculate quc from the Steps 3 and 5;
- 7.
- In the case of circular foundation or plate, the equivalent width (Beq) should be determined by the square root of the base area of such foundation or plate, as recommended by Décourt [1];
- 8.
- Obtain the load–settlement curve by Equation (6):
2.3. DMT after Inundation
3. Plate Load Tests (PLT)
4. Study Site
5. Results and Discussion
5.1. DMT
5.2. Constrained Modulus
5.3. Load–Settlement Curves
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Décourt, L. Behavior of Foundations under Working Load Conditions. In Proceedings of the 11th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Foz do Iguaçu, PR, Brasil, 8–12 August 1999; International Society for Soil Mechanics and Geotechnical Engineering: London, UK, 1999; pp. 453–488. [Google Scholar]
- Schmertmann, J.H. Static Cone to Compute Static Settlement over Sand. J. Soil Mech. Found. Div. 1970, 96, 1011–1043. [Google Scholar] [CrossRef]
- Mayne, P.W.; Brown, D.; Vinson, J.; Schneider, J.A.; Finke, K.A. Site Characterization of Piedmont Residual Soils at the NGES, Opelika, Alabama. In National Geotechnical Experimentation Sites; GSP 93; ASCE: Reston, VA, USA, 2000; pp. 160–185. [Google Scholar]
- Briaud, J.-L. Spread Footings in Sand: Load Settlement Curve Approach. J. Geotech. Geoenviron. Eng. 2007, 133, 905–920. [Google Scholar] [CrossRef]
- Tarawneh, B.; Nusairat, J.; Hakam, Y. Load Testing and Settlement of Shallow Foundation on Desert Sands. Proc. Inst. Civ. Eng. -Geotech. Eng. 2018, 171, 52–63. [Google Scholar] [CrossRef]
- Schultze, E.; Sherif, G. Prediction of Settlements from Evaluated Settlement Observations for Sand. In Eighth International Conference on Soil Mechanics and Foundation Engineering; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1973; Volume 1, pp. 225–230. [Google Scholar]
- Monaco, P.; Totani, G.; Calabrese, M. DMT-Predicted vs. Observed Settlements: A Review of the Available Experience. In Proceedings of the 2nd International Conference on the Flat Dilatometer, Washington, DC, USA, 2–6 April 2006; pp. 244–252. [Google Scholar]
- Schmertmann, J.H. Dilatometer to Compute Foundation Settlement. In Proceedings of the Specialty Conference, In Situ ’86, Blacksburg, VA, USA, 23–25 June 1986; pp. 303–321. [Google Scholar]
- Dos Santos, R.A.; Rocha, B.P.; Giacheti, H.L. DMT for Load-Settlement Curve Prediction in a Tropical Sandy Soil Compared to Plate Load Tests. Geotech. Test. J. 2019, 43, 113–131. [Google Scholar] [CrossRef]
- Marchetti, S.; Monaco, P.; Totani, G.; Calabrese, M. The Flat Dilatometer Test (DMT) in Soil Investigations—A Report by the ISSMGE Committee TC16. In Proceedings of the International Conference on In Situ Measurement of Soil Properties and Case Histories, Bali, Indonesia, 21–24 May 2001; pp. 95–131. [Google Scholar]
- Silva, N.M.; Rocha, B.P.; Giacheti, H.L. Prediction of Load-Settlement Curves by the DMT in an Unsaturated Tropical Soil Site. Soils Rocks 2019, 42, 351–361. [Google Scholar] [CrossRef]
- Li, P.; Vanapalli, S.; Li, T. Review of Collapse Triggering Mechanism of Collapsible Soils Due to Wetting. J. Rock Mech. Geotech. Eng. 2016, 8, 256–274. [Google Scholar] [CrossRef]
- Silveira, I.A.; Rodrigues, R.A. Collapsible Behavior of Lateritic Soil Due to Compacting Conditions. Int. J. Civ. Eng. 2020, 18, 1157–1166. [Google Scholar] [CrossRef]
- Rodrigues, R.A.; Soares, F.V.P.; Sanchez, M. Settlement of Footings on Compacted and Natural Collapsible Soils upon Loading and Soaking. J. Geotech. Geoenviron. Eng. 2021, 147, 04021010. [Google Scholar] [CrossRef]
- Rocha, B.P.; de Carvalho Rodrigues, A.L.; Rodrigues, R.A.; Giacheti, H.L. Using a Seismic Dilatometer to Identify Collapsible Soils. Int. J. Civ. Eng. 2022, 20, 857–867. [Google Scholar] [CrossRef]
- Rollins, K.M.; Rogers, G.W. Mitigation Measures for Small Structures on Collapsible Alluvial Soils. J. Geotech. Eng. 1994, 120, 1533–1553. [Google Scholar] [CrossRef]
- Garakani, A.A.; Haeri, S.M.; Cherati, D.Y.; Givi, F.A.; Tadi, M.K.; Hashemi, A.H.; Chiti, N.; Qahremani, F. Effect of Road Salts on the Hydro-Mechanical Behavior of Unsaturated Collapsible Soils. Transp. Geotech. 2018, 17, 77–90. [Google Scholar] [CrossRef]
- Mitchell, J.K. Soil Improvement: State-of-Art Report. In Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 15–19 June 1981; pp. 509–565. [Google Scholar]
- AlShaba, A.A.; Abdelaziz, T.M.; Ragheb, A.M. Treatment of Collapsible Soils by Mixing with Iron Powder. Alex. Eng. J. 2018, 57, 3737–3745. [Google Scholar] [CrossRef]
- Marçal, R.; Lodi, P.C.; Correia, N.S.; Giacheti, H.L.; Rodrigues, R.A.; McCartney, J.S. Reinforcing Effect of Polypropylene Waste Strips on Compacted Lateritic Soils. Sustainability 2020, 12, 9572. [Google Scholar] [CrossRef]
- Jennings, J.E.; Knight, K. A Guide to Construction on or with Materials Exhibiting Additional Settlement Due to “Collapse” of Grain Structure. In Proceedings of the 6th Regional Conference for Africa on Soil Mechanics & Foundation Engineering, Durban, South Africa, September 1975; pp. 99–105. [Google Scholar]
- Tadepalli, R.; Fredlund, D.G. The Collapse Behavior of a Compacted Soil during Inundation. Can. Geotech. J. 1991, 28, 477–488. [Google Scholar] [CrossRef]
- Tadepalli, R.; Rahardjo, H.; Fredlund, D.G. Measurements of Matric Suction and Volume Changes during Inundation of Collapsible Soil. Geotech. Test. J. 1992, 15, 115–122. [Google Scholar] [CrossRef]
- Costa, Y.D.; Cintra, J.C.; Zornberg, J.G. Influence of Matric Suction on the Results of Plate Load Tests Performed on a Lateritic Soil Deposit. Geotech. Test. J. 2003, 26, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Cintra, J.C.A.; Aoki, N. Projeto de Fundações Em Solos Colapsíveis; EESC-USP: São Carlos, SP, Brasil, 2009. [Google Scholar]
- Carvalho, D.; Souza, A. Análise Do Efeito Do Umedecimento Do Solo Em Fundações Rasas e Profundas Em Solos Porosos. In Proceedings of the IX Congresso Brasileiro de Mecânica dos Solos e Engenharia de Fundações, Salvador, BA, Brasil, 1990; Volume 2, pp. 109–114. [Google Scholar]
- Tang, Y.; Vo, T.; Taiebat, H.A.; Russell, A.R. Influences of Suction on Plate Load Tests on Unsaturated Silty Sands. J. Geotech. Geoenviron. Eng. 2018, 144, 04018043. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, C.; Qian, B.; Ren, J.; Guan, Y. Plate Load Tests on an Unsaturated Sand–Kaolin Mixture with Varying Water Table. Sensors 2022, 22, 2161. [Google Scholar] [CrossRef]
- Terzaghi, K. Theoretical Soil Mechanics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1943. [Google Scholar]
- Lehane, B.; Fahey, M. Using SCPT and DMT Data for Settlement Prediction in Sand. In Proceedings of the Second International Conference on Site Characterization, Porto, Portugal, 19–22 September 2004; Volume 2, pp. 1673–1679. [Google Scholar]
- Décourt, L. Loading Tests: Interpretation and Prediction of Their Results. In Proceedings of the Symposium Honoring Dr. John H. Schmertmann for His Contributions to Civil Engineering at Research to Practice in Geotechnical Engineering Congress, New Orleans, LA, USA, 9–12 March 2008; pp. 452–470. [Google Scholar]
- Rodrigues, A.L.C. Estudo da Compressibilidade e da Colapsibilidade de um Perfil do Subsolo por meio do DMT. Master’s Thesis, Universidade Estadual Paulista—Faculdade de Engenharia, Bauru, SP, Brasil, 2021. [Google Scholar]
- ABNT NBR 6457; Amostras de Solo—Preparação Para Ensaios de Compactação e Ensaios de Caracterização. Associação Brasileira de Normas Técnicas: Rio de Janeiro, RJ, Brasil, 2016.
- Oh, W.T.; Vanapalli, S.K. Scale Effects of Plate Load Tests in Unsaturated Soils. Geomate 2013, 4, 585–594. [Google Scholar]
- ABNT NBR 6489; Solo—Prova de Carga Estática Em Fundação Direta. Associação Brasileira de Normas Técnicas: Rio de Janeiro, RJ, Brasil, 2019.
- Giacheti, H.L.; Bezerra, R.C.; Rocha, B.P.; Rodrigues, R.A. Seasonal Influence on Cone Penetration Test: An Unsaturated Soil Site Example. J. Rock Mech. Geotech. Eng. 2019, 11, 361–368. [Google Scholar] [CrossRef]
- De Mio, G. Condicionantes Geológicos Na Interpretação de Ensaios de Piezocone Para Identificação Estratigráfica Na Investigação Geotécnica e Geoambiental. Ph.D. Thesis, Universidade de São Paulo—Escola de Engenharia de São Carlos, São Carlos, SP, Brasil, 2005. [Google Scholar]
- Rocha, B.P.; Castro, B.A.C.; Giacheti, H.L. Seismic DMT Test in a Non-Text Book Type Geomaterial. In Proceedings of the 3rd International Conference on the Flat Dilatometer, Rome, Italy, 14–17 June 2015; Volume 1, pp. 505–512. [Google Scholar]
- Rocha, B.P.; Giacheti, H.L. Site Characterization of a Tropical Soil by In Situ Tests. DYNA 2018, 85, 211–219. [Google Scholar] [CrossRef]
- Fernandes, J.B. Resistência e Deformabilidade de um solo não Saturado a Partir de Ensaios Triaxiais. Master’s Thesis, Universidade Estadual Paulista—Faculdade de Engenharia, Bauru, SP, Brasil, 2016. [Google Scholar]
- Pournaghiazar, M.; Russell, A.R.; Khalili, N. The Cone Penetration Test in Unsaturated Sands. Géotechnique 2013, 63, 1209–1220. [Google Scholar] [CrossRef]
- Rocha, B.P.; Rodrigues, R.A.; Giacheti, H.L. The Flat Dilatometer Test in an Unsaturated Tropical Soil Site. Geotech. Geol. Eng. 2021, 39, 5957–5969. [Google Scholar] [CrossRef]
- Lutenegger, A.J. Current Status of the Marchetti Dilatometer Test. In Proceedings of the First International Symposium on Penetration Testing, ISOPT-1, Orlando, FL, USA, 20–24 March 1988; Volume 27, pp. 137–155. [Google Scholar]
- Fredlund, D.G.; Rahardjo, H. An Overview of Unsaturated Soil Behaviour; Geotechnical. Special Publication, ASCE: Dallas, TX, USA, 24–28 October 1993; pp. 1–31. [Google Scholar]
- Nelson, J.D.; Overton, D.D.; Durkee, D.B. Depth of Wetting and the Active Zone. In Proceedings of the Shallow Foundation and Soil Properties Committee Sessions at ASCE Civil Engineering Conference, Houston, TX, USA, 10–13 October 2001; pp. 95–109. [Google Scholar]
- MolaAbasi, H.; Saberian, M.; Khajeh, A.; Li, J.; Jamshidi Chenari, R. Settlement Predictions of Shallow Foundations for Non-Cohesive Soils Based on CPT Records-Polynomial Model. Comput. Geotech. 2020, 128, 103811. [Google Scholar] [CrossRef]
- Poulos, H.G.; Carter, J.P.; Small, J.C. Foundations and Retaining Structures: Research and Practice. In Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Turkey, 27–31 August 2001; Volume 4, pp. 2527–2606. [Google Scholar]
- Son, M.; Jung, H.S.; Yoon, H.H.; Sung, D.; Kim, J.S. Numerical Study on Scale Effect of Repetitive Plate-Loading Test. Appl. Sci. 2019, 9, 4442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yan, X.; Li, Z. A Mathematical Framework for Multiphase Poromechanics in Multiple Porosity Media. Comput. Geotech. 2022, 146, 104728. [Google Scholar] [CrossRef]
ID ≤ 0.6 | RM = 0.14 + 2.36 log KD |
ID ≥ 3.0 | RM = 0.50 + 2.0 log KD |
0.6 < ID < 3.0 | RM = RM,0 + (2.5 − RM,0) log KD, with: RM,0 = 0.14 + 0.15 (ID − 0.6) |
KD > 10.0 | RM = 0.32 + 2.18 log KD |
RM < 0.85 | set RM = 0.85 |
Depth (m) | Natural | Inundated | ||||||
---|---|---|---|---|---|---|---|---|
ID | KD | ED (MPa) | MDMT (MPa) | ID | KD | ED (MPa) | MDMT (MPa) | |
1.1 | 1.31 | 4.71 | 4.05 | 7.13 | 1.52 | 1.66 | 1.88 | 1.63 |
1.3 | 1.32 | 3.22 | 3.30 | 4.57 | 1.88 | 1.25 | 2.15 | 1.83 |
1.5 | 1.24 | 2.80 | 3.13 | 3.89 | 2.81 | 1.13 | 3.24 | 2.76 |
2.1 | 1.63 | 2.38 | 4.74 | 5.30 | 1.97 | 1.15 | 2.65 | 2.25 |
2.3 | 1.60 | 2.15 | 4.67 | 4.75 | 1.55 | 1.26 | 2.58 | 2.19 |
2.5 | 1.54 | 2.23 | 5.09 | 5.33 | 1.95 | 1.21 | 3.29 | 2.80 |
3.1 | 1.59 | 2.23 | 6.45 | 6.80 | 1.86 | 0.91 | 2.72 | 2.31 |
3.3 | 1.68 | 2.11 | 6.84 | 6.91 | 1.75 | 1.06 | 3.01 | 2.56 |
3.5 | 1.75 | 2.12 | 7.61 | 7.75 | 1.78 | 0.94 | 3.02 | 2.57 |
4.1 | 1.66 | 2.31 | 9.21 | 10.07 | 2.17 | 1.02 | 4.77 | 4.06 |
4.3 | 1.69 | 2.28 | 9.71 | 10.52 | 1.95 | 1.63 | 7.14 | 6.12 |
4.5 | 1.74 | 2.06 | 9.45 | 9.38 | 2.07 | 1.61 | 6.80 | 6.02 |
Depth (m) | Natural MDMT (MPa) | Inundated MDMT (MPa) | Reduction (%) |
---|---|---|---|
1 | 5.21 | 2.07 | 60 |
2 | 5.16 | 2.41 | 53 |
3 | 7.20 | 2.48 | 66 |
4 | 10.05 | 5.40 | 46 |
Depth | Natural | Inundated | ||
---|---|---|---|---|
(m) | Stress (kPa) | Settlement (mm) | Stress (kPa) | Settlement (mm) |
1 | 119.4 | 2.5 | 47.5 | 2.1 |
2 | 118.2 | 3.8 | 55.3 | 2.9 |
3 | 165.0 | 4.6 | 56.9 | 3.6 |
4 | 230.2 | 6.9 | 123.7 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saab, A.L.; Rodrigues, A.L.d.C.; Rocha, B.P.; Rodrigues, R.A.; Giacheti, H.L. Suction Influence on Load–Settlement Curves Predicted by DMT in a Collapsible Sandy Soil. Sensors 2023, 23, 1429. https://doi.org/10.3390/s23031429
Saab AL, Rodrigues ALdC, Rocha BP, Rodrigues RA, Giacheti HL. Suction Influence on Load–Settlement Curves Predicted by DMT in a Collapsible Sandy Soil. Sensors. 2023; 23(3):1429. https://doi.org/10.3390/s23031429
Chicago/Turabian StyleSaab, Alfredo Lopes, André Luís de Carvalho Rodrigues, Breno Padovezi Rocha, Roger Augusto Rodrigues, and Heraldo Luiz Giacheti. 2023. "Suction Influence on Load–Settlement Curves Predicted by DMT in a Collapsible Sandy Soil" Sensors 23, no. 3: 1429. https://doi.org/10.3390/s23031429
APA StyleSaab, A. L., Rodrigues, A. L. d. C., Rocha, B. P., Rodrigues, R. A., & Giacheti, H. L. (2023). Suction Influence on Load–Settlement Curves Predicted by DMT in a Collapsible Sandy Soil. Sensors, 23(3), 1429. https://doi.org/10.3390/s23031429