Reliability of Mental Workload Index Assessed by EEG with Different Electrode Configurations and Signal Pre-Processing Pipelines
<p>A schematic representation of the experimental protocol timing (<b>upper panel</b>) and an example depicting what was presented to the volunteers on the PC screen (<b>lower panel</b>).</p> "> Figure 2
<p>A schematic representation of the pre-processing pipelines that were evaluated in this study.</p> "> Figure 3
<p>ICC values are shown for both consistency (<b>upper panel</b>) and absolute agreement (<b>lower panel</b>). Colors range from red (no consistency/absolute agreement) to green (highest consistency/absolute agreement) as shown in the color bar at the bottom of the figure.</p> "> Figure 4
<p>Representation of MWL in different experimental conditions (electrode configurations and pre-processing pipelines) and tasks. Asterisks refer to statistically significant differences (<span class="html-italic">p</span> < 0.05 *; <span class="html-italic">p</span> < 0.01 **).</p> ">
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Experimental Protocol
3.2. EEG Acquisitions
3.3. EEG Pre-Processing
- FILT—The first and simplest pipeline was characterized using band-pass filtering to mitigate the effects of the artifacts. In detail, EEG signals were band-pass filtered in the range 1–40 Hz using a Hamming windowed sinc FIR filter. Bad channels were removed by evaluating the normed joint probability of the average log power across the channels [56]. Channels whose probability falls more than three standard deviations from the mean are removed as bad channels.
- FILT + ASR—The second pipeline was implemented by adding the ASR algorithm to the FILT pipeline. ASR uses principal-component-like subspace decomposition to remove transient and high-amplitude artifacts, it provides a noiseless signal reconstruction using a reference signal fragment [57] and can be helpful for real-time artifact removal. ASR was used to interpolate artifact “bursts” with a variance higher than fifteen standard deviations different from the automatedly detected reference signal, as previously suggested [58].
- FILT + ICA—The third pipeline was proposed by adding the ICA artifact rejection method to the first pipeline. ICA algorithms are typically used to detect and remove artifacts (such as eye movements and electrocardiographic signals) that usually overlay with brain activity in EEG recordings. The extended Infomax [59] ICA algorithm was used in this work. ICLabel [60] was used to automatically reject independent components having a probability to be plausible brain sources of less than 40%.
- FILT + ASR + ICA—The last most complex pipeline included sequentially all the previous different approaches.
3.4. MWL Assessment
- Fz and Pz electrodes:
- Cz electrode:
- Frontal (F7, F3, Fz, F4, F8) and Parietal (P7, P3, Pz, P4, P8) electrodes:
3.5. Reproducibility Assessment
3.6. Statistical Analysis
4. Results
4.1. Reproducibility
4.2. Impact of Experimental Factors on MWL
4.3. Sensitivity to MWL Changes during Prolonged Simon Task
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Longo, L.; Wickens, C.D.; Hancock, P.A.; Hancock, G.M. Human Mental Workload: A Survey and a Novel Inclusive Definition. Front. Psychol. 2022, 13, 2962. [Google Scholar] [CrossRef] [PubMed]
- Cain, B. A Review of the Mental Workload Literature. Defence Research and Development Toronto (Canada). 2007. Available online: https://apps.dtic.mil/sti/citations/ADA474193 (accessed on 20 January 2023).
- Babiloni, F. Mental Workload Monitoring: New Perspectives from Neuroscience. Commun. Comput. Inf. Sci. 2019, 1107, 3–19. [Google Scholar] [CrossRef]
- Mitchell, D.K. Mental Workload and ARL Workload Modeling Tools. Army Research Lab Aberdeen Proving Ground MD. 2000. Available online: https://apps.dtic.mil/sti/citations/ADA377300 (accessed on 20 January 2023).
- Fan, J.; Smith, A.P. The Impact of Workload and Fatigue on Performance. Commun. Comput. Inf. Sci. 2017, 726, 90–105. [Google Scholar] [CrossRef]
- Lysaght, R.J.; Hill, S.G.; Dick, A.O.; Plamondon, B.D.; Linton, P.M. Operator Workload: Comprehensive Review and Evaluation of Operator Workload Methodologies. Analytics Inc Willow Grove PA. 1989. Available online: https://apps.dtic.mil/sti/citations/ADA212879 (accessed on 20 January 2023).
- Kantowitz, B.H. Attention and Mental Workload. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2016, 44, 456–459. [Google Scholar] [CrossRef]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of Science: Mental Workload in Ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef]
- Wilson, G.F. An Analysis of Mental Workload in Pilots During Flight Using Multiple Psychophysiological Measures. Int. J. Aviat. Psychol. 2009, 12, 3–18. [Google Scholar] [CrossRef]
- Chihara, T.; Kobayashi, F.; Sakamoto, J. Evaluation of Mental Workload during Automobile Driving Using One-Class Support Vector Machine with Eye Movement Data. Appl. Ergon. 2020, 89, 103201. [Google Scholar] [CrossRef]
- Gerjets, P.; Walter, C.; Rosenstiel, W.; Bogdan, M.; Zander, T.O. Cognitive State Monitoring and the Design of Adaptive Instruction in Digital Environments: Lessons Learned from Cognitive Workload Assessment Using a Passive Brain-Computer Interface Approach. Front. Neurosci. 2014, 8, 385. [Google Scholar] [CrossRef] [Green Version]
- Marchand, C.; de Graaf, J.B.; Jarrassé, N. Measuring Mental Workload in Assistive Wearable Devices: A Review. J Neuroeng. Rehabil. 2021, 18, 1–15. [Google Scholar] [CrossRef]
- Longo, L. Mental Workload in Medicine: Foundations, Applications, Open Problems, Challenges and Future Perspectives. In Proceedings of the IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS), Belfast and Dublin, Ireland, 20–24 June 2016; pp. 106–111. [Google Scholar] [CrossRef]
- Charles, R.L.; Nixon, J. Measuring Mental Workload Using Physiological Measures: A Systematic Review. Appl. Ergon. 2019, 74, 221–232. [Google Scholar] [CrossRef]
- Gevins, A.; Smith, M.E.; McEvoy, L.; Yu, D. High-Resolution EEG Mapping of Cortical Activation Related to Working Memory: Effects of Task Difficulty, Type of Processing, and Practice. Cereb. Cortex 1997, 7, 374–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missonnier, P.; Deiber, M.P.; Gold, G.; Millet, P.; Gex-Fabry Pun, M.; Fazio-Costa, L.; Giannakopoulos, P.; Ibáñez, V. Frontal Theta Event-Related Synchronization: Comparison of Directed Attention and Working Memory Load Effects. J. Neural Transm. 2006, 113, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Stipacek, A.; Grabner, R.H.; Neuper, C.; Fink, A.; Neubauer, A.C. Sensitivity of Human EEG Alpha Band Desynchronization to Different Working Memory Components and Increasing Levels of Memory Load. Neurosci. Lett. 2003, 353, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.; Lukander, K.; Korpela, J.; Sallinen, M.; Müller, K.M.I. Estimating Brain Load from the EEG. ScientificWorldJournal 2009, 9, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Gevins, A.; Smith, M.E. Neurophysiological Measures of Cognitive Workload during Human-Computer Interaction. Theor. Issues Ergon. Sci. 2003, 4, 113–131. [Google Scholar] [CrossRef]
- Kartali, A.; Janković, M.M.; Gligorijević, I.; Mijović, P.; Mijović, B.; Leva, M.C. Real-Time Mental Workload Estimation Using EEG. Commun. Comput. Inf. Sci. 2019, 1107, 20–34. [Google Scholar] [CrossRef]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring Neurophysiological Signals in Aircraft Pilots and Car Drivers for the Assessment of Mental Workload, Fatigue and Drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef]
- Bigdely-Shamlo, N.; Mullen, T.; Kothe, C.; Su, K.-M.; Robbins, K.A. The PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 2015, 9, 16. [Google Scholar] [CrossRef]
- di Flumeri, G.; Borghini, G.; Aricò, P.; Sciaraffa, N.; Lanzi, P.; Pozzi, S.; Vignali, V.; Lantieri, C.; Bichicchi, A.; Simone, A.; et al. EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings. Front. Hum. Neurosci. 2018, 12, 509. [Google Scholar] [CrossRef]
- das Chakladar, D.; Dey, S.; Roy, P.P.; Dogra, D.P. EEG-Based Mental Workload Estimation Using Deep BLSTM-LSTM Network and Evolutionary Algorithm. Biomed. Signal Process. Control 2020, 60, 101989. [Google Scholar] [CrossRef]
- Dasari, D.; Shou, G.; Ding, L. ICA-Derived EEG Correlates to Mental Fatigue, Effort, and Workload in a Realistically Simulated Air Traffic Control Task. Front. Neurosci. 2017, 11, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, H.; Shan, Y.; Liu, Y.; Pang, L.; Fan, Z.; Zhang, J.; Wanyan, X. Mental Workload Classification Method Based on EEG Independent Component Features. Appl. Sci. 2020, 10, 3036. [Google Scholar] [CrossRef]
- Lim, W.L.; Sourina, O.; Wang, L.P. STEW: Simultaneous Task EEG Workload Data Set. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2106–2114. [Google Scholar] [CrossRef] [PubMed]
- Rosanne, O.; Albuquerque, I.; Gagnon, J.F.; Tremblay, S.; Falk, T.H. Performance Comparison of Automated EEG Enhancement Algorithms for Mental Workload Assessment of Ambulant Users. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 61–64. [Google Scholar] [CrossRef]
- di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Ronca, V.; Vozzi, A.; Storti, S.F.; Menegaz, G.; Fiorini, P.; Babiloni, F. EEG-Based Workload Index as a Taxonomic Tool to Evaluate the Similarity of Different Robot-Assisted Surgery Systems. Commun. Comput. Inf. Sci. 2019, 1107, 105–117. [Google Scholar] [CrossRef]
- Bilalpur, M.; Kankanhalli, M.; Winkler, S.; Subramanian, R. EEG-Based Evaluation of Cognitive Workload Induced by Acoustic Parameters for Data Sonification. In Proceedings of the ICMI ’18: 20th ACM International Conference on Multimodal Interaction, Boulder, CO, USA, 16–20 October 2018; Association for Computing Machinery (ACM): New York, NY, USA; pp. 315–323. [Google Scholar] [CrossRef] [Green Version]
- Makoto, M. Makoto’s Preprocessing Pipeline. SCCN. Available online: https://sccn.ucsd.edu/wiki/Makoto%27s_preprocessing_pipeline (accessed on 26 October 2022).
- Höller, Y.; Uhl, A.; Bathke, A.; Thomschewski, A.; Butz, K.; Nardone, R.; Fell, J.; Trinka, E. Reliability of EEG measures of interaction: A paradigm shift is needed to fight the reproducibility crisis. Front. Hum. Neurosci. 2017, 11, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botvinik-Nezer, R.; Wager, T.D. Reproducibility in neuroimaging analysis: Challenges and solutions. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2023, in press. [Google Scholar] [CrossRef]
- Pernet, C.; Garrido, M.I.; Gramfort, A.; Maurits, N.; Michel, C.M.; Pang, E.; Salmelin, R.; Schoffelen, J.M.; Valdes-Sosa, P.A.; Puce, A. Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nat. Neurosci. 2020, 23, 1473–1483. [Google Scholar] [CrossRef]
- Pernet, C.; Garrido, M.; Gramfort, A.; Maurits, N.; Michel, C.M.; Pang, E.; Salmelin, R.; Schoffelen, J.M.; Valdes-Sosa, P.A.; Puce, A. Best Practices in Data Analysis and Sharing in Neuroimaging Using MEEG. Preprint at OSF. Available online: https://osf.io/a8dhx2018 (accessed on 20 January 2023).
- Zhou, Y.; Huang, S.; Xu, Z.; Wang, P.; Wu, X.; Zhang, D. Cognitive workload recognition using EEG signals and machine learning: A review. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 799–818. [Google Scholar] [CrossRef]
- Ding, L.; Duan, W.; Wang, Y.; Lei, X. Test-retest reproducibility comparison in resting and the mental task states: A sensor and source-level EEG spectral analysis. Int. J. Psychophysiol. 2022, 173, 20–28. [Google Scholar] [CrossRef]
- Corsi-Cabrera, M.; Galindo-Vilchis, L.; Del-Río-Portilla, Y.; Arce, C.; Ramos-Loyo, J. Within-subject reliability and inter-session stability of EEG power and coherent activity in women evaluated monthly over nine months. Clin. Neurophysiol. 2007, 118, 9–21. [Google Scholar] [CrossRef]
- Shirk, S.D.; McLaren, D.G.; Bloomfield, J.S.; Powers, A.; Duffy, A.; Mitchell, M.B.; Ezzati, A.; Ally, B.A.; Atri, A. Inter-rater reliability of preprocessing EEG data: Impact of subjective artifact removal on associative memory task ERP results. Front. Neurosci. 2017, 11, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez-Revelo, J.; Ochoa-Gomez, J.; Duque-Grajales, J. Improving test-retest reliability of quantitative electroencephalography using different preprocessing approaches. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 961–964. [Google Scholar] [CrossRef]
- Suárez-Revelo, J.X.; Ochoa-Gómez, J.F.; Tobón-Quintero, C.A. Validation of EEG pre-processing pipeline by test-retest reliability. In Workshop on Engineering Applications; Springer: Cham, Switzerland, 2018; pp. 290–299. [Google Scholar]
- Getzmann, S.; Reiser, J.E.; Karthaus, M.; Rudinger, G.; Wascher, E. Measuring correlates of mental workload during simulated driving using ceegrid electrodes: A test–retest reliability analysis. Front. Neuroergonomics 2021, 2, 729197. [Google Scholar] [CrossRef]
- Arico, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Graziani, I.; Imbert, J.P.; Granger, G.; Benhacene, R.; Terenzi, M.; Pozzi, S.; et al. Reliability over time of EEG-based mental workload evaluation during Air Traffic Management (ATM) tasks. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7242–7245. [Google Scholar] [CrossRef]
- Dehais, F.; Duprès, A.; Blum, S.; Drougard, N.; Scannella, S.; Roy, R.N.; Lotte, F. Monitoring pilot’s mental workload using ERPs and spectral power with a six-dry-electrode EEG system in real flight conditions. Sensors 2019, 19, 1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, L. Modeling cognitive load as a self-supervised brain rate with electroencephalography and deep learning. Brain Sci. 2022, 12, 1416. [Google Scholar] [CrossRef] [PubMed]
- Kutafina, E.; Heiligers, A.; Popovic, R.; Brenner, A.; Hankammer, B.; Jonas, S.M.; Mathiak, K.; Zweerings, J. Tracking of Mental Workload with a Mobile EEG Sensor. Sensors 2021, 21, 5205. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Kong, F.; Yang, X.; Liu, G.; Wen, W. Pattern recognition of cognitive load using eeg and ecg signals. Sensors 2020, 20, 5122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Korivand, S.; Hamill, K.; Jalili, N.; Gong, J. A comprehensive decoding of cognitive load. Smart Health 2022, 26, 100336. [Google Scholar] [CrossRef]
- Sarailoo, R.; Latifzadeh, K.; Amiri, S.H.; Bossaghzadeh, A.; Ebrahimpour, R. Assessment of Instantaneous Cognitive Load Imposed by Educational Multimedia using EEG Signals. Front. Neurosci. 2022, 16, 1275. [Google Scholar] [CrossRef]
- Kingphai, K.; Moshfeghi, Y. On EEG Preprocessing Role in Deep Learning Effectiveness for Mental Workload Classification. Commun. Comput. Inf. Sci. 2021, 1493, 81–98. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S. A Deep Learning Scheme for Mental Workload Classification Based on Restricted Boltzmann Machines. Cogn. Technol. Work. 2017, 19, 607–631. [Google Scholar] [CrossRef]
- Simon, J.; Wolf, J.D. Choice reaction time as a function of angular stimulus-response correspondence and age. Ergonomics 1963, 6, 99–105. [Google Scholar] [CrossRef]
- Hommel, B. Inverting the Simon Effect by Intention. Psychol. Res. 1993, 55, 270–279. [Google Scholar] [CrossRef]
- Stoet, G. PsyToolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments. Teach. Psychol. 2017, 44, 24–31. [Google Scholar] [CrossRef]
- Stoet, G. PsyToolkit: A Software Package for Programming Psychological Experiments Using Linux. Behav. Res. Methods 2010, 42, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Gabard-Durnam, L.J.; Leal, A.S.M.; Wilkinson, C.L.; Levin, A.R. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data. Front. Neurosci. 2018, 12, 97. [Google Scholar] [CrossRef]
- Mullen, T.; Kothe, C.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Cauwenberghs, G.; Jung, T.P. Real-Time Modeling and 3D Visualization of Source Dynamics and Connectivity Using Wearable EEG. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2184–2187. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.Y.; Hsu, S.H.; Pion-Tonachini, L.; Jung, T.P. Evaluation of Artifact Subspace Reconstruction for Automatic EEG Artifact Removal. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1242–1245. [Google Scholar] [CrossRef]
- Bell, A.J.; Sejnowski, T.J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An Automated Electroencephalographic Independent Component Classifier, Dataset, and Website. Neuroimage 2019, 198, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 26 October 2022).
- Borgmann, K.W.U.; Risko, E.F.; Stolz, J.A.; Besner, D. Simon Says: Reliability and the Role of Working Memory and Attentional Control in the Simon Task. Psychon. Bull. Rev. 2007, 14, 313–319. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, L.K.; Smith, M.E.; Gevins, A. Test–Retest Reliability of Cognitive EEG. Clin. Neurophysiol. 2000, 111, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Radüntz, T.; Fürstenau, N.; Mühlhausen, T.; Meffert, B. Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps. Front. Physiol. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
Effect | DFn | DFd | F | p | p < 0.05 | Ges |
---|---|---|---|---|---|---|
Pipelines | 1.27 | 15.27 | 4.253 | 0.049 | * | 0.016 |
Configurations | 2 | 24 | 3.91 | 0.034 | * | 0.038 |
Tasks | 1.49 | 17.9 | 10.47 | 0.002 | * | 0.166 |
Pipelines × Configurations | 2.59 | 31.12 | 2.635 | 0.075 | n.s. | 0.003 |
Pipelines × Tasks | 1.51 | 18.12 | 3.876 | 0.05 | * | 0.006 |
Configurations × Tasks | 2.24 | 26.9 | 3.485 | 0.04 | * | 0.014 |
Pipelines × Configurations × Tasks | 18 | 216 | 2.225 | 0.004 | * | 0.000987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastropietro, A.; Pirovano, I.; Marciano, A.; Porcelli, S.; Rizzo, G. Reliability of Mental Workload Index Assessed by EEG with Different Electrode Configurations and Signal Pre-Processing Pipelines. Sensors 2023, 23, 1367. https://doi.org/10.3390/s23031367
Mastropietro A, Pirovano I, Marciano A, Porcelli S, Rizzo G. Reliability of Mental Workload Index Assessed by EEG with Different Electrode Configurations and Signal Pre-Processing Pipelines. Sensors. 2023; 23(3):1367. https://doi.org/10.3390/s23031367
Chicago/Turabian StyleMastropietro, Alfonso, Ileana Pirovano, Alessio Marciano, Simone Porcelli, and Giovanna Rizzo. 2023. "Reliability of Mental Workload Index Assessed by EEG with Different Electrode Configurations and Signal Pre-Processing Pipelines" Sensors 23, no. 3: 1367. https://doi.org/10.3390/s23031367
APA StyleMastropietro, A., Pirovano, I., Marciano, A., Porcelli, S., & Rizzo, G. (2023). Reliability of Mental Workload Index Assessed by EEG with Different Electrode Configurations and Signal Pre-Processing Pipelines. Sensors, 23(3), 1367. https://doi.org/10.3390/s23031367