Abstract
The Organization for Human Brain Mapping (OHBM) has been active in advocating for the instantiation of best practices in neuroimaging data acquisition, analysis, reporting and sharing of both data and analysis code to deal with issues in science related to reproducibility and replicability. Here we summarize recommendations for such practices in magnetoencephalographic (MEG) and electroencephalographic (EEG) research, recently developed by the OHBM neuroimaging community known by the abbreviated name of COBIDAS MEEG. We discuss the rationale for the guidelines and their general content, which encompass many topics under active discussion in the field. We highlight future opportunities and challenges to maximizing the sharing and exploitation of MEG and EEG data, and we also discuss how this ‘living’ set of guidelines will evolve to continually address new developments in neurophysiological assessment methods and multimodal integration of neurophysiological data with other data types.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Barba, L.A. Terminologies for reproducible research. Preprint at arXiv https://arxiv.org/abs/1802.03311 (2018).
Nichols, T.E. et al. Best Practices in data analysis and sharing in neuroimaging using MRI. Preprint at bioRxiv https://doi.org/10.1101/054262 (2016).
Pernet, C.R. et al. Best practices in data analysis and sharing in neuroimaging using MEEG. Preprint at OSF https://osf.io/a8dhx (2018).
Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 160044 (2016).
Niso, G. et al. MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Sci. Data 5, 180110 (2018).
Pernet, C. R. et al. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci. Data 6, 103 (2019).
Holdgraf, C. et al. iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Sci. Data 6, 102 (2019).
Donchin, M. et al. Publication criteria for studies of evoked potentials (EP) in man: Methodology and publication criteria. in Progress in Clinical Neurophysiology: Attention, Voluntary Contraction and Event-Related Cerebral Potentials. (ed. Desmedt, J. E.) vol. 1 1–11 (Karger, 1977).
Pivik, R. T. et al. Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 30, 547–558 (1993).
Picton, T. W. et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37, 127–152 (2000).
Duncan, C. C. et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 120, 1883–1908 (2009).
Gross, J. et al. Good practice for conducting and reporting MEG research. Neuroimage 65, 349–363 (2013).
Keil, A. et al. Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology 51, 1–21 (2014).
Kane, N. et al. A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017. Clin. Neurophysiol. Pract. 2, 170–185 (2017).
Hari, R. et al. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin. Neurophysiol. 129, 1720–1747 (2018).
Hari, R. & Puce, A. MEG-EEG Primer. (Oxford Univ. Press, 2017).
Jobert, M. et al. Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG). Neuropsychobiology 66, 201–220 (2012).
Berger, H. Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 87, 527–570 (1929).
Walter, W. G. The location of cerebral tumors by electroencephalography. Lancet 228, 305–308 (1936).
Jasper, H. & Andrews, H. Electro-encephalography: III. Normal differentiation of occipital and precentral regions in man. Arch. Neurol. Psychiatry 39, 96–115 (1938).
Krishnan, V., Chang, B.S. & Schomer, D.L. Normal EEG in wakefulness and sleep: adults and elderly. in Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (eds. Schomer, D.L. & Lopes da Silva, F.H.) 202–228 (Oxford Univ. Press, 2017).
Katznelson, R.D. EEG recording, electrode placement, and aspects of generator localization. in Electric Fields of the Brain. The Neurophysics of EEG (ed. Nunez, P.) 176–213 (Oxford Univ. Press, 1981).
Boudewyn, M. A., Luck, S. J., Farrens, J. L. & Kappenman, E. S. How many trials does it take to get a significant ERP effect? It depends. Psychophysiology 55, e13049 (2018).
Chaumon, M., Puce, A. & George, N. Statistical power: implications for planning MEG studies. Preprint at bioRxiv https://doi.org/10.1101/852202 (2020).
Albers, C. & Lakens, D. When power analyses based on pilot data are biased: inaccurate effect size estimators and follow-up bias. J. Exp. Soc. Psychol. 74, 187–195 (2018).
Brysbaert, M. & Stevens, M. Power analysis and effect size in mixed effects models: a tutorial. J. Cogn. 1, 9 (2018).
Robbins, K. A., Touryan, J., Mullen, T., Kothe, C. & Bigdely-Shamlo, N. How sensitive are EEG results to preprocessing methods: a benchmarking study. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1081–1090 (2020).
Baillet, S., Mosher, J. C. & Leahy, R. M. Electromagnetic brain mapping. IEEE Signal Process. Mag. 18, 14–30 (2001).
Michel, C. & He, B. EEG Mapping and Source Imaging. in Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (eds. Schomer, D. L. & da Silva, F. H. L.) chap 45 (Oxford University Press, 2018).
Michel, C. M. et al. EEG source imaging. Clin. Neurophysiol. 115, 2195–2222 (2004).
Michel, C. M. & Brunet, D. EEG source imaging: a practical review of the analysis steps. Front. Neurol. 10, 325 (2019).
Brodbeck, V. et al. Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134, 2887–2897 (2011).
Hassan, M., Dufor, O., Merlet, I., Berrou, C. & Wendling, F. EEG source connectivity analysis: from dense array recordings to brain networks. PLoS ONE 9, e105041 (2014).
Kass, R. E. et al. Ten simple rules for effective statistical practice. PLoS Comput. Biol. 12, e1004961 (2016).
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).
Kriegeskorte, N., Lindquist, M. A., Nichols, T. E., Poldrack, R. A. & Vul, E. Everything you never wanted to know about circular analysis, but were afraid to ask. J. Cereb. Blood Flow Metab. 30, 1551–1557 (2010).
Kilner, J. M., Kiebel, S. J. & Friston, K. J. Applications of random field theory to electrophysiology. Neurosci. Lett. 374, 174–178 (2005).
Pernet, C. R., Chauveau, N., Gaspar, C. & Rousselet, G. A. LIMO EEG: a toolbox for hierarchical linear modeling of electroencephalographic data. Comput. Intell. Neurosci. 2011, 831409 (2011).
Guthrie, D. & Buchwald, J. S. Significance testing of difference potentials. Psychophysiology 28, 240–244 (1991).
Piai, V., Dahlslätt, K. & Maris, E. Statistically comparing EEG/MEG waveforms through successive significant univariate tests: how bad can it be? Psychophysiology 52, 440–443 (2015).
Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 113, 7900–7905 (2016).
Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).
Pernet, C. R., Latinus, M., Nichols, T. E. & Rousselet, G. A. Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: a simulation study. J. Neurosci. Methods 250, 85–93 (2015).
Varoquaux, G. et al. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. Neuroimage 145, 166–179 (2017). Pt B.
O’Neill, G. C. et al. Dynamics of large-scale electrophysiological networks: a technical review. Neuroimage 180, 559–576 (2018). Pt B.
He, B. et al. Electrophysiological brain connectivity: theory and implementation. IEEE Trans. Biomed. Eng. https://doi.org/10.1109/TBME.2019.2913928 (2019).
Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).
Haufe, S., Nikulin, V. V., Müller, K.-R. & Nolte, G. A critical assessment of connectivity measures for EEG data: a simulation study. Neuroimage 64, 120–133 (2013).
Jensen, O. & Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269 (2007).
Tort, A. B. L., Komorowski, R., Eichenbaum, H. & Kopell, N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104, 1195–1210 (2010).
van Wijk, B. C. M., Jha, A., Penny, W. & Litvak, V. Parametric estimation of cross-frequency coupling. J. Neurosci. Methods 243, 94–102 (2015).
Dupré la Tour, T. et al. Non-linear auto-regressive models for cross-frequency coupling in neural time series. PLOS Comput. Biol. 13, e1005893 (2017).
Lai, M., Demuru, M., Hillebrand, A. & Fraschini, M. A comparison between scalp- and source-reconstructed EEG networks. Sci. Rep. 8, 12269 (2018).
Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J. & Friston, K. Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58, 339–361 (2011).
Reid, A. T. et al. Advancing functional connectivity research from association to causation. Nat. Neurosci. 22, 1751–1760 (2019).
Mahjoory, K. et al. Consistency of EEG source localization and connectivity estimates. Neuroimage 152, 590–601 (2017).
Pearl, P.L. et al. Normal EEG in wakefulness and sleep: preterm; term; infant; adolescent. in Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (eds. Schomer, D.L. & Lopes da Silva, F.H.) 167–201 (Oxford Univ. Press, 2018).
Jas, M. et al. A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices. Front. Neurosci. 12, 530 (2018).
Rousselet, G. A. & Pernet, C. R. Quantifying the time course of visual object processing using ERPs: it’s time to up the game. Front. Psychol. 2, 107 (2011).
Eglen, S. J. et al. Toward standard practices for sharing computer code and programs in neuroscience. Nat. Neurosci. 20, 770–773 (2017).
Leppäaho, E. et al. Discovering heritable modes of MEG spectral power. Hum. Brain Mapp. 40, 1391–1402 (2019).
Pernet, D. C., Heunis, S., Herholz, P. & Halchenko, Y. O. The Open Brain Consent: informing research participants and obtaining consent to share brain imaging data. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/f6mnp (2020).
Tuckute, G., Hansen, S. T., Pedersen, N., Steenstrup, D. & Hansen, L. K. Single-trial decoding of scalp EEG under natural conditions. Comput. Intell. Neurosci. 2019, 9210785 (2019).
Pion-Tonachini, L., Kreutz-Delgado, K. & Makeig, S. The ICLabel dataset of electroencephalographic (EEG) independent component (IC) features. Data Brief 25, 104101 (2019).
Boto, E. et al. A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers. Neuroimage 149, 404–414 (2017).
Boto, E. et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555, 657–661 (2018).
Brown, G. D., Yamada, S. & Sejnowski, T. J. Independent component analysis at the neural cocktail party. Trends Neurosci. 24, 54–63 (2001).
Jung, T. P. et al. Imaging brain dynamics using independent component analysis. Proc. IEEE Inst. Electr. Electron. Eng. 89, 1107–1122 (2001).
Onton, J., Westerfield, M., Townsend, J. & Makeig, S. Imaging human EEG dynamics using independent component analysis. Neurosci. Biobehav. Rev. 30, 808–822 (2006).
Uusitalo, M. A. & Ilmoniemi, R. J. Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Comput. 35, 135–140 (1997).
Taulu, S., Kajola, M. & Simola, J. Suppression of interference and artifacts by the signal space separation method. Brain Topogr. 16, 269–275 (2004).
Taulu, S. & Simola, J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys. Med. Biol. 51, 1759–1768 (2006).
Rousselet, G. A. Does filtering preclude us from studying ERP time-courses? Front. Psychol. 3, 131 (2012).
Widmann, A., Schröger, E. & Maess, B. Digital filter design for electrophysiological data—a practical approach. J. Neurosci. Methods 250, 34–46 (2015).
Fraschini, M. et al. The effect of epoch length on estimated EEG functional connectivity and brain network organisation. J. Neural Eng. 13, 036015 (2016).
Grandchamp, R. & Delorme, A. Single-trial normalization for event-related spectral decomposition reduces sensitivity to noisy trials. Front. Psychol. 2, 236 (2011).
Alday, P. M. How much baseline correction do we need in ERP research? Extended GLM model can replace baseline correction while lifting its limits. Psychophysiology 56, e13451 (2019).
Engemann, D. A. & Gramfort, A. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals. Neuroimage 108, 328–342 (2015).
Guggenmos, M., Sterzer, P. & Cichy, R. M. Multivariate pattern analysis for MEG: A comparison of dissimilarity measures. Neuroimage 173, 434–447 (2018).
Cohen, M. Analyzing Neural Time Series Data. Theory and Practice. (MIT Press, 2014).
Bloomfield, P. Fourier Analysis of Time Series: An Introduction. (Wiley, 2013).
Boashash, B. Time-frequency Signal Analysis and Processing: a Comprehensive Reference. (Elsevier, 2003).
Farahibozorg, S.-R., Henson, R. N. & Hauk, O. Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes. Neuroimage 169, 23–45 (2018).
Sporns, O. Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660 (2014).
Tewarie, P. et al. Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity. Neuroimage 200, 38–50 (2019).
Litvak, V. et al. EEG and MEG data analysis in SPM8. Comput. Intell. Neurosci. 2011, 852961 (2011).
Amzica, F. & da Silva, F.H.L. Cellular substrates of brain rhythms. in Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (eds. Schomer, D.L. & Silva, F) ch. 2 (Oxford Univ. Press, 2018).
Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 20, 327–339 (2017).
Uhlhaas, P. J., Pipa, G., Neuenschwander, S., Wibral, M. & Singer, W. A new look at gamma? High- (>60 Hz) γ-band activity in cortical networks: function, mechanisms and impairment. Prog. Biophys. Mol. Biol. 105, 14–28 (2011).
Lopes da Silva, F. EEG and MEG: relevance to neuroscience. Neuron 80, 1112–1128 (2013).
Acknowledgements
The Committee thanks the hundreds of OHBM members who provided feedback on the early version of the report and on the website. Thank you to T. Nichols for his insightful comments on an earlier draft of this Perspective.
Author information
Authors and Affiliations
Contributions
C.P. and A.P. chaired the committee, planned the overall structure of the COBIDAS document and this manuscript. Each author contributed to entire sections of the COBIDAS document used for this manuscript, and all authors contributed and reviewed this manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Neuroscience thanks Michael Cohen, Joachim Gross, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pernet, C., Garrido, M.I., Gramfort, A. et al. Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nat Neurosci 23, 1473–1483 (2020). https://doi.org/10.1038/s41593-020-00709-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41593-020-00709-0
This article is cited by
-
Resting-state electroencephalography and magnetoencephalography in migraine–a systematic review and meta-analysis
The Journal of Headache and Pain (2024)
-
Heartbeat-evoked neural response abnormalities in generalized anxiety disorder during peripheral adrenergic stimulation
Neuropsychopharmacology (2024)
-
Neuroimaging biomarkers of addiction
Nature Mental Health (2024)
-
Tactile versus motor imagery: differences in corticospinal excitability assessed with single-pulse TMS
Scientific Reports (2024)
-
Reporting checklists in neuroimaging: promoting transparency, replicability, and reproducibility
Neuropsychopharmacology (2024)