Recent Advances in Forward Brillouin Scattering: Sensor Applications
<p>(<b>a</b>) Experimental setup. OSC: oscilloscope; PD: fast photodetector; LPF: long-pass filter; DM: dichroic mirror; WDM: wavelength division multiplexer; PPL: pulsed pump laser; λ/2: half wavelength plate; TDL: tunable continuous wave diode laser; PC: polarization controller; Blue line: pump laser path; Red line: probe laser path. (<b>b</b>) Typical pump pulses for 7 kW and 20 W peak powers. (<b>c</b>) Transmittance of the LPG and operation principle of the pump and probe technique: (i) the vertical dashed line indicates the probe laser wavelength, which is set in the linear region of the LPG transmittance, and (ii) the acoustic wave will shift the resonance wavelength of the grating (Δ<span class="html-italic">λ</span><sub>LPG</sub>) and this will cause the transmission of the probe signal to be modulated by Δ<span class="html-italic">T</span>.</p> "> Figure 2
<p>Oscilloscope traces for pump pulses of (<b>a</b>) 7 kW and (<b>b</b>) 20 W. Each one of the traces is the result of 1064 averages. (<b>c</b>,<b>d</b>) The fast Fourier transform of traces (<b>a</b>) and (<b>b</b>): SNR > 40 dB and 15 dB can be observed, respectively, for the strongest resonances.</p> "> Figure 3
<p>Acoustic resonances (<b>a</b>) R<sub>0,5</sub> and (<b>b</b>) R<sub>0,10</sub>—experimental points and fitted Breit–Wigner–Fano functions—and (<b>c</b>) linewidth of R<sub>0,m</sub> resonances versus the frequency.</p> "> Figure 4
<p>(<b>a</b>) Spectrum of transverse acoustic resonances with pump polarization adjusted for an optimum excitation of TR<sub>2,<span class="html-italic">m</span></sub> modes. (<b>b</b>) Detail of the strongest resonances with the identification of each resonance type: R<sub>0,<span class="html-italic">m</span></sub> modes are denoted by circles, while <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>TR</mi> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> <mrow> <mfenced> <mn>1</mn> </mfenced> </mrow> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>TR</mi> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> <mrow> <mfenced> <mn>2</mn> </mfenced> </mrow> </msubsup> </mrow> </semantics></math> are denoted by squares and triangles, respectively. Each resonance, R<sub>0,<span class="html-italic">m</span></sub> and <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>TR</mi> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> <mrow> <mfenced> <mn>1</mn> </mfenced> </mrow> </msubsup> </mrow> </semantics></math>, is labeled with its order <span class="html-italic">m</span>.</p> "> Figure 5
<p>(<b>a</b>) Experimental frequencies for radial, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> </mrow> </semantics></math>, and torsional-radial, <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>TR</mi> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> <mrow> <mfenced> <mn>1</mn> </mfenced> </mrow> </msubsup> </mrow> </semantics></math>, resonances versus the order <span class="html-italic">m</span> at 20 °C, and the corresponding fits. (<b>b</b>) Poisson’s ratio as a function of the temperature, and a linear fit. The inset shows the RF spectra for different temperatures corresponding to resonances <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mn>0</mn> <mo>,</mo> <mn>10</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>TR</mi> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mn>15</mn> </mrow> <mrow> <mfenced> <mn>1</mn> </mfenced> </mrow> </msubsup> </mrow> </semantics></math>.</p> "> Figure 6
<p>Relative frequency shift of resonances <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mn>0</mn> <mo>,</mo> <mn>20</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>TR</mi> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mn>24</mn> </mrow> <mrow> <mfenced> <mn>1</mn> </mfenced> </mrow> </msubsup> </mrow> </semantics></math> versus temperature (<b>a</b>) and strain (<b>b</b>). Both figures include the averaged values of Δ<span class="html-italic">f/f</span> over all the resonances, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>TR</mi> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> <mrow> <mfenced> <mn>1</mn> </mfenced> </mrow> </msubsup> </mrow> </semantics></math>, of each series (solid lines).</p> ">
Abstract
:1. Introduction
2. A Point Pump and Probe Technique
3. Asymptotic Expressions for High-Order Resonances
4. Sensor Applications
4.1. High-Accuracy Measurement of Poisson’s Ratio
4.2. Simultaneous Strain and Temperature Measurement with a Single-Point Sensor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shelby, R.M.; Levenson, M.D.; Bayer, P.W. Guided acoustic-wave Brillouin scattering. Phys. Rev. B 1985, 31, 5244–5252. [Google Scholar] [CrossRef] [PubMed]
- Zadok, A.; Diamandi, H.H.; London, Y.; Bashan, G. Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode, Polar-ization-Maintaining, and Multi-Core, 1st ed.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kang, M.S.; Brenn, A.; Wiederhecker, G.S.; Russell, P.S. Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers. Appl. Phys. Lett. 2008, 93, 131110. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.S.; Nazarkin, A.; Brenn, A.; Russell, P. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nat. Phys. 2009, 5, 276–280. [Google Scholar] [CrossRef]
- Beugnot, J.-C.; Lebrun, S.; Pauliat, G.; Maillotte, H.; Laude, V.; Sylvestre, T. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat. Commun. 2014, 5, 5242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, M.; Jiang, X.; He, W.; Wong, G.; Onishchukov, G.; Joly, N.; Ahmed, G.; Menyuk, C.R.; Russell, P. Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core. Optica 2015, 2, 339–342. [Google Scholar] [CrossRef]
- Antman, Y.; Clain, A.; London, Y.; Zadok, A. Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering. Optica 2016, 3, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhao, X.; Li, Y.; Qin, Z.; Pang, Y.; Liu, Z. Simultaneous measurement of relative humidity and temperature based on forward Brillouin scattering in polyimide-overlaid fiber. Sens. Actuators B Chem. 2021, 348, 130702. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Peng, J.; Ji, Z. Simultaneous measurement of temperature and acoustic impedance based on forward Brillouin scattering in LEAF. Opt. Lett. 2021, 46, 1776–1779. [Google Scholar] [CrossRef]
- Chow, D.M.; Yang, Z.; Soto, M.A.; Thévenaz, L. Distributed forward Brillouin sensor based on local light phase recovery. Nat. Commun. 2018, 9, 2990. [Google Scholar] [CrossRef]
- Pang, C.; Hua, Z.; Zhou, D.; Zhang, H.; Chen, L.; Bao, X.; Dong, Y.K. Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing. Optica 2020, 7, 176–184. [Google Scholar] [CrossRef]
- Alcusa-Sáez, E.P.; Díez, A.; Rivera-Pérez, E.; Margulis, W.; Norin, L.; Andrés, M.V. Acousto-optic interaction in polyimide coated optical fibers with flexural waves. Opt. Express 2017, 25, 17167–17173. [Google Scholar] [CrossRef]
- Diamandi, H.H.; London, Y.; Bashan, G.; Zadok, A. Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide. Appl. Phys. Lett. Photonics 2019, 4, 016105. [Google Scholar] [CrossRef] [Green Version]
- Bashan, G.; Diamandi, H.H.; London, Y.; Preter, E.; Zadok, A. Optomechanical time-domain reflectometry. Nat. Commun. 2018, 9, 2991. [Google Scholar] [CrossRef] [Green Version]
- Diamandi, H.H.; London, Y.; Bashan, G.; Shemer, K.; Zadok, A. Forward Stimulated Brillouin Scattering Analysis of Optical Fibers Coatings. J. Light. Technol. 2021, 39, 1800–1807. [Google Scholar] [CrossRef]
- Ba, D.; Hua, Z.; Li, Y.; Dong, Y. Polarization separation assisted optomechanical time-domain analysis with submeter resolution. Opt. Lett. 2021, 46, 5886–5889. [Google Scholar] [CrossRef]
- Zaslawski, S.; Yang, Z.; Thévenaz, L. Distributed optomechanical fiber sensing based on serrodyne analysis. Optica 2021, 8, 388–395. [Google Scholar] [CrossRef]
- Sharma, K.; Zehavi, E.; Diamandi, H.H.; Bashan, G.; London, Y.; Zadok, A. Direct time-of-flight distributed analysis of nonlinear forward scattering. Optica 2022, 9, 419–428. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Z.; Fu, X.; Gui, X. Coherent-detection-based distributed acoustic impedance sensing enabled by a chirped fiber Bragg grating array. Photonics Res. 2022, 10, 1325–1331. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Z.; Fu, X.; Wang, L.; Wang, H. Multipoint acoustic impedance sensing based on frequency-division multiplexed forward stimulated Brillouin scattering. Opt. Lett. 2020, 45, 4523–4526. [Google Scholar] [CrossRef]
- Rakich, P.T.; Reinke, C.; Camacho, R.; Davids, P.; Wang, Z. Giant Enhancement of Stimulated Brillouin Scattering in the Subwavelength Limit. Phys. Rev. X 2012, 2, 011008. [Google Scholar] [CrossRef] [Green Version]
- Gil Bashan, G.; Diamandi, H.H.; Zehavi, E.; Sharma, K.; London, Y.; Zadok, A. A forward Brillouin fibre laser. Nat. Commun. 2022, 13, 3554. [Google Scholar] [CrossRef] [PubMed]
- London, Y.; Sharma, K.; Diamandi, H.H.; Hen, M.; Bashan, G.; Zehavi, E.; Zilberman, S.; Berkovic, G.; Zentner, A.; Mayoni, M.; et al. Opto-Mechanical Fiber Sensing of Gamma Radiation. J. Light. Technol. 2021, 39, 6637–6645. [Google Scholar] [CrossRef]
- Sánchez, L.A.; Diez, A.; Cruz, J.L.; Andrés, M. Efficient interrogation method of forward Brillouin scattering in optical fibers using a narrow bandwidth long-period grating. Opt. Lett. 2020, 45, 5331–5334. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, L.A.; Díez, A.; Cruz, J.L.; Andrés, M.V. High accuracy measurement of Poisson’s ratio of optical fibers and its temperature dependence using forward-stimulated Brillouin scattering. Opt. Express 2022, 30, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, L.A.; Díez, A.; Cruz, J.L.; Andrés, M.V. Strain and temperature measurement discrimination with forward Brillouin scattering in optical fibers. Opt. Express 2022, 30, 14384–14392. [Google Scholar] [CrossRef] [PubMed]
- Rivera–Pérez, E.; Carrascosa, A.; Díez, A.; Alcusa-Sáez, E.P.; Andrés, M.V. An approach to the measurement of the nonlinear refractive index of very short lengths of optical fibers. Appl. Phys. Lett. 2018, 113, 011108. [Google Scholar] [CrossRef]
- Poveda-Wong, L.; Cruz, J.L.; Delgado-Pinar, M.; Roselló-Mechó, X.; Díez, A.; Andrés, M.V. Fabrication of long period fiber gratings of subnanometric bandwidth. Opt. Lett. 2017, 42, 1265–1268. [Google Scholar] [CrossRef] [Green Version]
- Biryukov, A.S.; Sukharev, M.E.; Dianov, E.M. Excitation of sound waves upon propagation of laser pulses in optical fibres. Quantum Electron. 2002, 32, 765–775. [Google Scholar] [CrossRef]
- Diamandi, H.H.; Bashan, G.; London, Y.; Sharma, K.; Shemer, K.; Zadok, A. Interpolarization Forward Stimulated Brillouin Scattering in Standard Single-Mode Fibers. Laser Photonics Rev. 2021, 16, 2100337. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Y.; Zhang, R.; Gauthier, D. FSBS resonances observed in a standard highly nonlinear fiber. Opt. Express 2011, 19, 5339–5349. [Google Scholar] [CrossRef]
- Olver, F.W.J. Bessel Functions of integer order. In Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 10th ed.; Abramowitz, M., Stegun, I.A., Eds.; National Bureau of Standards Applied Mathematics Series No. 55; U.S. Government Printing Office: Washington, DC, USA, 1972; pp. 364–365. [Google Scholar]
- Shemer, K.; Bashan, G.; Zehavi, E.; Diamandi, H.; Bernstein, A.; Sharma, K.; London, Y.; Barrera, D.; Sales, S.; Bergman, A.; et al. Optical fiber point sensors based on forward Brillouin scattering. Opt. Express 2022, 30, 39321–39328. [Google Scholar] [CrossRef]
- Jarschel, P.F.; Magalhaes, L.S.; Aldaya, I.; Florez, O.; Dainese, P. Fiber taper diameter characterization using forward Brillouin scattering. Opt. Lett. 2018, 43, 995–998. [Google Scholar] [CrossRef]
- Bertholds, A.; Dandliker, R. Determination of the individual strain-optic coefficients in single-mode optical fibres. J. Light. Technol. 1988, 6, 17–20. [Google Scholar] [CrossRef]
- El-Diasty, F. Multiple-beam interferometric determination of Poisson's ratio and strain distribution profiles along the cross section of bent single-mode optical fibers. Appl. Opt. 2000, 39, 3197–3201. [Google Scholar] [CrossRef]
- Shiraki, K.; Ohashi, M. Sound velocity measurement based on guided acoustic-wave Brillouin scattering. IEEE Photonics Technol. Lett. 1992, 4, 1177–1180. [Google Scholar] [CrossRef]
- Spinner, S. Elastic Moduli of Glasses at Elevated Temperatures by a Dynamic Method. J. Am. Ceram. Soc. 1956, 39, 113–118. [Google Scholar] [CrossRef]
- Fukuhara, M.; Sanpei, A.; Shibuki, K. Low temperature-elastic moduli, Debye temperature and internal dilational and shear frictions of fused quartz. J. Mater. Sci. 1997, 32, 1207–1211. [Google Scholar] [CrossRef]
- Han, Z.; Zhao, N.; Yang, Z.; Li, G. Error analyses for simultaneous measurement of temperature and strain based on polarization-maintaining few-mode fibers. In Proceedings of the Asia Communications and Photonics Conference, Hangzhou, China, 26–29 October 2018. [Google Scholar] [CrossRef]
m | R0,m (MHz) | TR2,m(1) (MHz) | TR2,m(2) (MHz) | |||
---|---|---|---|---|---|---|
Experiment | Theory | Experiment | Theory | Experiment | Theory | |
1 | 30.17 | 29.98 | 39.16 | 39.02 | 22.20 | 22.14 |
2 | 81.23 | 80.85 | 80.26 | 80.80 | 70.10 | 69.87 |
3 | 129.44 | 128.84 | 107.73 | 107.55 | 125.68 | 125.03 |
4 | 177.24 | 176.43 | 139.02 | 138.82 | 175.22 | 174.49 |
5 | 224.83 | 223.89 | 168.17 | 167.82 | 222.48 | 221.53 |
6 | 272.40 | 271.29 | 198.85 | 198.59 | 271.04 | 269.68 |
7 | 319.89 | 318.65 | 229.20 | 228.86 | 317.56 | 316.41 |
8 | 367.32 | 365.98 | 258.39 | 258.25 | 366.30 | 364.72 |
9 | 414.76 | 413.31 | 288.38 | 288.25 | 414.43 | 412.34 |
10 | 462.13 | 460.62 | 319.32 | 318.1 | 461.74 | 459.57 |
11 | 509.51 | 507.93 | 347.94 | 347.76 | 509.10 | 507.06 |
12 | 556.82 | 555.23 | 377.77 | 377.61 | 556.36 | 556.19 |
13 | 604.08 | 602.53 | 407.07 | 407.16 | 603.57 | 601.77 |
14 | 651.42 | 649.82 | 437.01 | 437.04 | 650.86 | 649.20 |
15 | 698.68 | 697.12 | 466.72 | 466.86 | 698.06 | 696.44 |
16 | 745.99 | 744.41 | 496.51 | 496.47 | 745.27 | 743.81 |
17 | 793.28 | 791.70 | 526.19 | 526.24 | 792.53 | 793.69 |
18 | 840.51 | 838.98 | 554.80 | 554.18 | 839.63 | 838.44 |
19 | 887.77 | 886.27 | 585.41 | 585.66 | 886.82 | 885.81 |
20 | 935.03 | 933.56 | 615.20 | 615.40 | ||
21 | 982.25 | 980.84 | 644.86 | 645.02 | ||
22 | 1029.54 | 1028.12 | 674.69 | 674.80 | ||
23 | 1076.72 | 1075.41 | 704.84 | 704.53 | ||
24 | 1123.98 | 1122.69 | 733.81 | 734.19 | ||
25 | 1171.34 | 1169.97 | 763.64 | 763.92 | ||
26 | -- | 791.05 | ||||
27 | 823.09 | 823.30 | ||||
28 | 852.89 | 853.02 | ||||
29 | 881.88 | 882.66 |
(με−1) | (°C−1) | (με−1) | (°C−1) |
---|---|---|---|
4.82 × 10−7 | 9.73 × 10−5 | 7.25 × 10−7 | 6.24 × 10−5 |
(με) | (°C) | (με) | (°C) |
−0.154 × 107 | 0.179 × 105 | 0.240 × 107 | −0.119 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, L.A.; Díez, A.; Cruz, J.L.; Andrés, M.V. Recent Advances in Forward Brillouin Scattering: Sensor Applications. Sensors 2023, 23, 318. https://doi.org/10.3390/s23010318
Sánchez LA, Díez A, Cruz JL, Andrés MV. Recent Advances in Forward Brillouin Scattering: Sensor Applications. Sensors. 2023; 23(1):318. https://doi.org/10.3390/s23010318
Chicago/Turabian StyleSánchez, Luis A., Antonio Díez, José Luis Cruz, and Miguel V. Andrés. 2023. "Recent Advances in Forward Brillouin Scattering: Sensor Applications" Sensors 23, no. 1: 318. https://doi.org/10.3390/s23010318
APA StyleSánchez, L. A., Díez, A., Cruz, J. L., & Andrés, M. V. (2023). Recent Advances in Forward Brillouin Scattering: Sensor Applications. Sensors, 23(1), 318. https://doi.org/10.3390/s23010318