[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Low temperature-elastic moduli, Debye temperature and internal dilational and shear frictions of fused quartz

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Longitudinal and transverse wave velocities, five kinds of elastic parameters (Young’s, shear and bulk moduli, Lame parameter, Poisson’s ratio), Debye temperature, and dilational and shear internal frictions for fused quartz were simultaneously measured over the temperature range from 73 to 400 K, using the ultrasonic pulse wave with frequency of 7.7 MHz. Large increase in Young’s and bulk moduli and small increase in shear modulus and Lame parameter suggest enhancement of rigidity for KI mode on heating. This would be explained by quasi-crystallization which is associated with a lateral motion of oxygen atoms and the resulting relief of macroscopic strains. The 99 and 137 K peaks and 360 K one in shear friction are probably related to dielectric loss peaks arising from Al3+–Na+ and Al3+–K+ substitutional–interstitial paired defects and to β1/β2-tridymite phase transition, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. D. E. Day and G. E. Rindone, J. Amer. Ceram. Soc. 44 (1961) 161.

    Article  CAS  Google Scholar 

  2. C. Zenner, in “Elasticity and anelasticity of metals”, 3rd edn (University of Chicago Press, Chicago, IL, 1956) p. 163.

    Google Scholar 

  3. M. Fukuhara and A. Sanpei, Jpn J. Appl. Phys. 33 (1994) 2890.

    Article  CAS  Google Scholar 

  4. J. A. Sawer, Virginia J. Sci. 5 (1954) 144.

    Google Scholar 

  5. J. J. Martin, J. Appl. Phys. 56 (1984) 2536.

    Article  CAS  Google Scholar 

  6. J. W. Marx and J. M. Sivertsen, ibid. 24 (1953) 81.

    Article  CAS  Google Scholar 

  7. H. J. McSkimin, ibid. 24 (1953) 988.

    Article  CAS  Google Scholar 

  8. M. E. Fine, H. van Duyne and N. T. Kenney, ibid. 25 (1954) 402.

    Article  CAS  Google Scholar 

  9. O. L. Anderson and H. E. BÖmmel, J. Amer. Ceram. Soc. 38 (1955) 125.

    Article  Google Scholar 

  10. T. Kosugi, Jpn J. Appl. Phys. 33(1) (1994) 2862.

    Article  CAS  Google Scholar 

  11. T. Yamamoto, M. Saho, K. Okazaki and G. Terui, in Proceedings of Toyohashi International Conference on Ultrasonic Technology, edited by K. Toda (Myu Research, Tokyo, 1987) p. 343.

    Google Scholar 

  12. M. Fukuhara and A. Sanpei, Phys. Rev. B 49 (1994) 13 099.

    Article  CAS  Google Scholar 

  13. D. B. Fraser, J. Appl. Phys. 35 (1964) 2913.

    Article  CAS  Google Scholar 

  14. M. Fukuhara and A. Sanpei, J. Polym. Sci; Polym. Phys. 33 (1995) 1847.

    Article  CAS  Google Scholar 

  15. A. Sather, J. Acoust. Soc. Amer. 43 (1960) 129.

    Google Scholar 

  16. H. J. McSkimin and E. S. Fisher, J. Appl. Phys. 31 (1960) 1627.

    Article  CAS  Google Scholar 

  17. M. Fukuhara and I. Yamauchi, J. Mater. Sci. 28 (1993) 4681.

    Article  CAS  Google Scholar 

  18. L. Y. Tu, J. N. Brennan and J. A. Sauer, J. Acoust. Soc. Amer. 27 (1955) 550.

    Article  Google Scholar 

  19. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics” (John Wiley & Sons, New York, 1976) p. 589.

    Google Scholar 

  20. M. Fukuhara and Y. Abe, J. Mater. Sci. Lett. 12 (1993) 681.

    Article  CAS  Google Scholar 

  21. M. Fukuhara and A. Sanpei, Iron and Steel Institute of Japan Int. 33 (1993) 508.

    Article  CAS  Google Scholar 

  22. Idem., J. Mater. Sci. Lett. 12 (1993) 1122.

    Article  CAS  Google Scholar 

  23. S. Spinner, J. Amer. Ceram. Soc. 45 (1962) 394.

    Article  CAS  Google Scholar 

  24. E. H. Carnevale, L. H. Lynnworth and G. S. Larson, J. Acoust. Soc. Amer. 36 (1964) 1678.

    Article  Google Scholar 

  25. E. Deeg, Glasstech. Ber. 31 (1958) 124.

    CAS  Google Scholar 

  26. S. Spinner and G. W. Cleek, J. Appl. Phys. 31 (1960) 1407.

    Article  CAS  Google Scholar 

  27. G. J. Dienes, J. Phys. Chem. Solids 7 (1958) 290.

    Article  CAS  Google Scholar 

  28. G. W. Watson and S. C. Parker, Phil. Mag. Lett. 71 (1995) 59.

    Article  CAS  Google Scholar 

  29. B. E. Warren, J. Appl. Phys. 8 (1937) 645.

    Article  CAS  Google Scholar 

  30. R. BruÜckner, J. Non-Cryst. Solids 5 (1970) 123.

    Article  Google Scholar 

  31. O. L. Anderson and G. L. Dienes, “Non-crystalline solids”, edited by V. D. Fréchette (John Wiley & Sons, New York, 1960) p. 453.

    Google Scholar 

  32. D. S. Park and A. S. Nowick, Phys. Status Solidi(a) 26 (1974) 617.

    Article  CAS  Google Scholar 

  33. A. S. Nowick and M. W. Stanley, J. Appl. Phys. 40 (1969) 4996.

    Article  Google Scholar 

  34. J. M. Stevels and J. Volger, Philips Res. Rep. 17 (1962) 283.

    CAS  Google Scholar 

  35. O. L. Sosman and J. A. Sauer, J. Acoust. Soc. Amer. 27 (1955) 550.

    Article  Google Scholar 

  36. G. Hetherington, K. H. Jack and J. C. Kennedy, Phys. Chem. Glass. 5 (1964) 130.

    CAS  Google Scholar 

  37. R. Vacher, J. Pelous, F. Plicque and A. Zarembowitch, J. Non-Cryst. Solids 45 (1981) 397.

    Article  CAS  Google Scholar 

  38. S. Hunklinger and W. Arnold, “Physical acoustics”, Vol. XII, edited by W. P. Mason and R. N. Thurston (Academic Press, New York, 1976) p. 160.

    Google Scholar 

  39. R. E. Strakna and H. T. Savage, J. Appl. Phys. 35 (1964) 1445.

    Article  CAS  Google Scholar 

  40. J. M. Stevels and A. Kats, Philips Res. Rep. 11 (1956) 103

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FUKUHARA, M., SANPEI, A. & SHIBUKI, K. Low temperature-elastic moduli, Debye temperature and internal dilational and shear frictions of fused quartz. Journal of Materials Science 32, 1207–1211 (1997). https://doi.org/10.1023/A:1018583918380

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018583918380

Keywords

Navigation