Linear-Nonlinear Switching Active Disturbance Rejection Speed Controller for Permanent Magnet Synchronous Motors
<p>ADRC block diagram.</p> "> Figure 2
<p>Comparison of the linear and nonlinear <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>a</mi> <mi>l</mi> </mrow> </semantics></math> functions with different <math display="inline"><semantics> <mi>α</mi> </semantics></math> values.</p> "> Figure 3
<p>Comparison of the linear function, <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>a</mi> <mi>l</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>δ</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>a</mi> <msub> <mi>l</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>α</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>Effect of different parameter changes on <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>a</mi> <msub> <mi>l</mi> <mi>s</mi> </msub> </mrow> </semantics></math>. (<b>a</b>) Three-dimensional diagram of the effect of parameter <math display="inline"><semantics> <msub> <mi>α</mi> <mn>1</mn> </msub> </semantics></math>. (<b>b</b>) Three-dimensional diagram of the effect of parameter <math display="inline"><semantics> <msub> <mi>δ</mi> <mn>1</mn> </msub> </semantics></math>. (<b>c</b>) Three-dimensional diagram of the effect of parameter <math display="inline"><semantics> <msub> <mi>δ</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 5
<p>SADRC block diagram.</p> "> Figure 6
<p>Boundary of the observation error.</p> "> Figure 7
<p>Structure diagram of the PMSM servo system based on SADRC.</p> "> Figure 8
<p>Photograph of the experimental platform.</p> "> Figure 9
<p>Speed step experiment from 20 r/min to 120 r/min: (<b>a</b>) LADRC (<b>b</b>) NLADRC (<b>c</b>) SADRC.</p> "> Figure 9 Cont.
<p>Speed step experiment from 20 r/min to 120 r/min: (<b>a</b>) LADRC (<b>b</b>) NLADRC (<b>c</b>) SADRC.</p> "> Figure 10
<p>Speed waveforms at steady-state for the three control strategies: (<b>a</b>) LADRC (<b>b</b>) NLADRC (<b>c</b>) SADRC.</p> "> Figure 11
<p>Experiment of the three control strategies under a step load of 1 N·m: (<b>a</b>) LADRC (<b>b</b>) NLADRC (<b>c</b>) SADRC.</p> "> Figure 12
<p>Tracking waveforms of the three control strategies under sinusoidal signal: (<b>a</b>) LADRC (<b>b</b>) NLADRC (<b>c</b>) SADRC.</p> "> Figure 13
<p>Comprehensive performance comparison of the LADRC, NLADRC and SADRC.</p> ">
Abstract
:1. Introduction
2. Mathematical Model of a PMSM
3. Design of a Linear-Nonlinear Switching Active Disturbance Rejection Controller
3.1. Active Disturbance Rejection Control Algorithm
3.2. Linear-Nonlinear Switching Active Disturbance Rejection Control
4. Stability and Convergence of Linear-Nonlinear Switching Controllers
4.1. Convergence of Linear-Nonlinear Switching Extended State Observer
4.2. Closed-Loop Stability
5. Experimental Results and Discussion
5.1. Experimental Platform
5.2. Parameter Tuning
5.3. Speed Step Experiment
5.4. Steady-State Performance
5.5. Step Load Experiment
5.6. Sinusoidal Signal Tracking Experiment
5.7. Comprehensive Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakunthala, S.; Kiranmayi, R.; Mandadi, P.N. A Review on Speed Control of Permanent Magnet Synchronous Motor Drive Using Different Control Techniques. In Proceedings of the 2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 22–23 February 2018; pp. 97–102. [Google Scholar]
- Jung, J.W.; Leu, V.Q.; Do, T.D.; Kim, E.K.; Choi, H.H. Adaptive PID Speed Control Design for Permanent Magnet Synchronous Motor Drives. IEEE Trans. Power Electron. 2015, 30, 900–908. [Google Scholar] [CrossRef]
- Guo, B.; Bacha, S.; Alamir, M. A Review on ADRC Based PMSM Control Designs. In Proceedings of the IECON 2017—3rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; Volume 3, pp. 1747–1753. [Google Scholar]
- Wang, Y.; Feng, Y.; Zhang, X.; Liang, J. A New Reaching Law for Antidisturbance Sliding-Mode Control of PMSM Speed Regulation System. IEEE Trans. Power Electron. 2020, 35, 4117–4126. [Google Scholar] [CrossRef]
- Niu, K.; Chen, X.; Yang, D.; Li, J.; Yu, J. A New Sliding Mode Control Algorithm of IGC System for Intercepting Great Maneuvering Target Based on EDO. Sensors 2022, 22, 7618. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.M.; Moezzi, R.; Cyrus, J.; Hlava, J. Model Predictive Control for Autonomous Driving Vehicles. Electronics 2021, 10, 2593. [Google Scholar] [CrossRef]
- Nauman, M.; Shireen, W.; Hussain, A. Model-Free Predictive Control and Its Applications. Energies 2022, 15, 5131. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Deng, Y. Torque Ripple Minimization of PMSM Based on Robust ILC Via Adaptive Sliding Mode Control. IEEE Trans. Power Electron. 2018, 33, 3655–3671. [Google Scholar] [CrossRef]
- Yu, J.; Shi, P.; Dong, W.; Chen, B.; Lin, C. Neural Network-Based Adaptive Dynamic Surface Control for Permanent Magnet Synchronous Motors. IEEE Trans. Neural Networks Learn. Syst. 2015, 26, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Morfin-Santana, A.; Muñoz, F.; Salazar, S.; Valdovinos, J.M. Robust Neural Network Consensus for Multiagent UASs Based on Weights’ Estimation Error. Drones 2022, 6, 300. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, L.; Zhang, L.; Liu, M.; Duanmu, Y.; Chen, Y.; Dang, P.; Li, J. A Variable-Order Fuzzy Logic Controller Design Method for an Unmanned Underwater Vehicle Based on NSGA-II. Fractal Fract. 2022, 6, 577. [Google Scholar] [CrossRef]
- Xu, X.; Shaker, A.; Salem, M.S. Automatic Control of a Mobile Manipulator Robot Based on Type-2 Fuzzy Sliding Mode Technique. Mathematics 2022, 10, 3773. [Google Scholar] [CrossRef]
- Han, Y.; Li, H.; Li, W. Research on PMSM Sensor-Less System Based on ADRC-PBC Strategy. In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 3186–3191. [Google Scholar]
- Guerrero-Sánchez, W.F.; Linares-Flores, J.; Hernández-Méndez, A.; Gonzalez-Diaz, V.R.; Mino Aguilar, G.; Munoz-Hernandez, G.A.; Guerrero-Castellanos, J.F. A Cooperative ADRC-Based Approach for Angular Velocity Synchronization and Load-Sharing in Servomechanisms. Energies 2022, 15, 5121. [Google Scholar] [CrossRef]
- Huang, D.; Min, D.; Jian, Y.; Li, Y. Current-Cycle Iterative Learning Control for High-Precision Position Tracking of Piezoelectric Actuator System via Active Disturbance Rejection Control for Hysteresis Compensation. IEEE Trans. Ind. Electron. 2020, 67, 8680–8690. [Google Scholar] [CrossRef]
- Han, J. Active Disturbance Rejection Control Technique: The Technique for Estimating and Compensating the Uncertainties; National Defense Industry Press: Beijing, China, 2008. [Google Scholar]
- Gao, Z.; Huang, Y.; Han, J. An Alternative Paradigm for Control System Design. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 5, pp. 4578–4585. [Google Scholar]
- Gao, Z. Scaling and Bandwidth-Parameterization Based Controller Tuning. In Proceedings of the Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 6, pp. 4989–4996. [Google Scholar]
- Yang, Z.; Ji, J.; Sun, X.; Zhu, H.; Zhao, Q. Active Disturbance Rejection Control for Bearingless Induction Motor Based on Hyperbolic Tangent Tracking Differentiator. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2623–2633. [Google Scholar] [CrossRef]
- Qu, J.; Xia, Y.; Shi, Y.; Cao, J.; Wang, H.; Meng, Y. Modified ADRC for Inertial Stabilized Platform With Corrected Disturbance Compensation and Improved Speed Observer. IEEE Access 2020, 8, 157703–157716. [Google Scholar] [CrossRef]
- Qu, L.; Qiao, W.; Qu, L. An Enhanced Linear Active Disturbance Rejection Rotor Position Sensorless Control for Permanent Magnet Synchronous Motors. IEEE Trans. Power Electron. 2020, 35, 6175–6184. [Google Scholar] [CrossRef]
- Shi, S.; Zeng, Z.; Zhao, C.; Guo, L.; Chen, P. Improved Active Disturbance Rejection Control (ADRC) with Extended State Filters. Energies 2022, 15, 5799. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Luo, J.; Qian, J.; Ma, W.; Jiang, P.; Fan, Y. A New Mechanical Resonance Suppression Method for Large Optical Telescope by Using Nonlinear Active Disturbance Rejection Control. IEEE Access 2019, 7, 94400–94414. [Google Scholar] [CrossRef]
- Qu, L.; Qiao, W.; Qu, L. Active-Disturbance-Rejection-Based Sliding-Mode Current Control for Permanent-Magnet Synchronous Motors. IEEE Trans. Power Electron. 2021, 36, 751–760. [Google Scholar] [CrossRef]
- Gao, K.; Song, J.; Wang, X.; Li, H. Fractional-Order Proportional-Integral-Derivative Linear Active Disturbance Rejection Control Design and Parameter Optimization for Hypersonic Vehicles with Actuator Faults. Tsinghua Sci. Technol. 2021, 26, 9–23. [Google Scholar] [CrossRef]
- Lu, W.; Li, Q.; Lu, K.; Lu, Y.; Guo, L.; Yan, W.; Xu, F. Load Adaptive PMSM Drive System Based on an Improved ADRC for Manipulator Joint. IEEE Access 2021, 9, 33369–33384. [Google Scholar] [CrossRef]
- Li, J.; Xia, Y.; Qi, X.; Gao, Z. On the Necessity, Scheme, and Basis of the Linear–Nonlinear Switching in Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2017, 64, 1425–1435. [Google Scholar] [CrossRef]
- Hao, Z.; Yang, Y.; Gong, Y.; Hao, Z.; Zhang, C.; Song, H.; Zhang, J. Linear/Nonlinear Active Disturbance Rejection Switching Control for Permanent Magnet Synchronous Motors. IEEE Trans. Power Electron. 2021, 36, 9334–9347. [Google Scholar] [CrossRef]
- Lin, P.; Wu, Z.; Liu, K.Z.; Sun, X.M. A Class of Linear–Nonlinear Switching Active Disturbance Rejection Speed and Current Controllers for PMSM. IEEE Trans. Power Electron. 2021, 36, 14366–14382. [Google Scholar] [CrossRef]
- Krishnan, R. Permanent Magnet Synchronous and Brushless DC Motor Drives; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Gan, Z.; Han, J. Lyapunov Function Construction for Second-Order ESO. In Proceedings of the Twenty-first China Control Conference, Hangzhou, China, 28–30 July 2002; pp. 365–368. [Google Scholar]
Symbol | Description | Value |
---|---|---|
P | Rate power | 707 W |
R | Armature resistanc | 0.12 |
Inductance of d axis | 0.2 mH | |
Inductance of q axis | 0.2 mH | |
Torque coefficient | 0.46 Nm/A | |
Number of pole pairs | 10 | |
J | Inertia |
LADRC | NLADRC | SADRC | |
---|---|---|---|
Speed overshoot (r/min) | 2.7 | 0 | 0 |
Adjustment time (s) | 0.574 | 0.851 | 0.262 |
LADRC | NLADRC | SADRC | |
---|---|---|---|
Maximum speed (r/min) | 121.079 | 121.307 | 121.079 |
Minimum speed (r/min) | 117.989 | 118.332 | 118.332 |
Range (r/min) | 3.090 | 2.975 | 2.747 |
LADRC | NLADRC | SADRC | |
---|---|---|---|
Maximum speed fluctuation (r/min) | 15.4 | 36.9 | 9.8 |
Adjustment time (s) | 0.530 | 0.789 | 0.406 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zhang, B.; Chu, H.; Yang, X.; Shen, H.; Zhang, J. Linear-Nonlinear Switching Active Disturbance Rejection Speed Controller for Permanent Magnet Synchronous Motors. Sensors 2022, 22, 9611. https://doi.org/10.3390/s22249611
Qu Y, Zhang B, Chu H, Yang X, Shen H, Zhang J. Linear-Nonlinear Switching Active Disturbance Rejection Speed Controller for Permanent Magnet Synchronous Motors. Sensors. 2022; 22(24):9611. https://doi.org/10.3390/s22249611
Chicago/Turabian StyleQu, Ying, Bin Zhang, Hairong Chu, Xiaoxia Yang, Honghai Shen, and Jingzhong Zhang. 2022. "Linear-Nonlinear Switching Active Disturbance Rejection Speed Controller for Permanent Magnet Synchronous Motors" Sensors 22, no. 24: 9611. https://doi.org/10.3390/s22249611
APA StyleQu, Y., Zhang, B., Chu, H., Yang, X., Shen, H., & Zhang, J. (2022). Linear-Nonlinear Switching Active Disturbance Rejection Speed Controller for Permanent Magnet Synchronous Motors. Sensors, 22(24), 9611. https://doi.org/10.3390/s22249611