Automatic Control of a Mobile Manipulator Robot Based on Type-2 Fuzzy Sliding Mode Technique
<p>Schematic representation for the robot: (<b>a</b>) Side view and (<b>b</b>) Top view.</p> "> Figure 2
<p>Membership function of the type-2 fuzzy system’s input.</p> "> Figure 3
<p>(<b>a</b>) The performance of controllers in tracking by moving body (<b>b</b>) The tracking error magnitude of the proposed method.</p> "> Figure 4
<p>The tracking performance of the two controllers for the angle of the second joint of the arm.</p> "> Figure 5
<p>The magnitude of the second arm joint position tracking error.</p> "> Figure 6
<p>The magnitude of robot velocity error based on AFC and RAC.</p> "> Figure 7
<p>(<b>a</b>) Right wheel control signal and (<b>b</b>) Left wheel control signal.</p> "> Figure 8
<p>(<b>a</b>) First joint control signal and (<b>b</b>) Second joint control signal.</p> "> Figure 9
<p>Apply disturbances as an obstacle in the path of the robot.</p> ">
Abstract
:1. Introduction
- Two-stage control design for mobile manipulator system
- Stability analysis of the control system
- Use trapezoidal type-2 fuzzy sets combined with sliding mode control
2. Mathematical Modeling
3. Automatic Controller Design
3.1. Kinematic Control
3.2. Dynamic Control
3.3. Type-2 Fuzzy Sliding Mode Control
3.4. Adaptive Linear Control
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Guo, M.; Mohammadzadeh, A.; Mosavi, A. Taylor Series-Based Fuzzy Model Predictive Control for Wheeled Robots. Mathematics 2022, 10, 2498. [Google Scholar] [CrossRef]
- Huang, H.; Shirkhani, M.; Tavoosi, J.; Mahmoud, O. A New Intelligent Dynamic Control Method for a Class of Stochastic Nonlinear Systems. Mathematics 2022, 10, 1406. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Zhang, C.; Qi, M. A simulation study on the robotic mobile fulfillment system in high-density storage warehouses. Simul. Model. Pract. Theory 2021, 112, 102366. [Google Scholar] [CrossRef]
- Dörfler, K.; Hack, N.; Sandy, T.; Giftthaler, M.; Lussi, M.; Walzer, A.N.; Buchli, J.; Gramazio, F.; Kohler, M. Mobile robotic fabrication beyond factory conditions: Case study Mesh Mould wall of the DFAB HOUSE. Constr. Robot. 2019, 3, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Tavoosi, J.; Shirkhani, M.; Abdali, A.; Mohammadzadeh, A.; Nazari, M.; Mobayen, S.; Asad, J.H.; Bartoszewicz, A. A New General Type-2 Fuzzy Predictive Scheme for PID Tuning. Appl. Sci. 2021, 11, 10392. [Google Scholar] [CrossRef]
- Ha, Q.P.; Yen, L.; Balaguer, C. Robotic autonomous systems for earthmoving in military applications. Autom. Constr. 2019, 107, 102934. [Google Scholar] [CrossRef]
- Gopinath, A.; Jisha, V.R. Gain Scheduled LQR Control of a Two Wheeled Mobile Robot with Heavy Payloads. In Proceedings of the 2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Trivandrum, India, 10 March 2022; Volume 1, pp. 436–441. [Google Scholar]
- Nath, K.; Yesmin, A.; Nanda, A.; Bera, M.K. Event-triggered sliding-mode control of two wheeled mobile robot: An experimental validation. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 218–226. [Google Scholar] [CrossRef]
- Hyatt, P.; Wingate, D.; Killpack, M.D. Model-based control of soft actuators using learned non-linear discrete-time models. Front. Robot. AI 2019, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.S.; Chen, Y.P.; Shaffer, M.A. Reducing work and home cognitive failures: The roles of workplace flextime use and perceived control. J. Bus. Psychol. 2021, 36, 155–172. [Google Scholar] [CrossRef]
- Mobayen, S.; Ma, J. Robust finite-time composite nonlinear feedback control for synchronization of uncertain chaotic systems with nonlinearity and time-delay. Chaos Solitons Fractals 2018, 114, 46–54. [Google Scholar] [CrossRef]
- Xing, X.; Liu, J. Robust adaptive control allocation for a class of cascade ODE-string systems with actuator failures. IEEE Trans. Autom. Control 2021, 67, 1474–1481. [Google Scholar] [CrossRef]
- Mohammadi, F.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B.; Ali, M.H.; Wei, W.; Erdinç, O.; Shirkhani, M. Robust control strategies for microgrids: A review. IEEE Syst. J. 2021, 16, 2401–2412. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, R.; Rind, S.J.; Zeng, P.; Jiang, L. Speed sensorless nonlinear adaptive control of induction motor using combined speed and perturbation observer. Control Eng. Pract. 2022, 123, 105166. [Google Scholar] [CrossRef]
- Danyali, S.; Aghaei, O.; Shirkhani, M.; Aazami, R.; Tavoosi, J.; Mohammadzadeh, A.; Mosavi, A. A New Model Predictive Control Method for Buck-Boost Inverter-Based Photovoltaic Systems. Sustainability 2022, 14, 11731. [Google Scholar] [CrossRef]
- Chen, H.; Fang, Y.; Sun, N. An adaptive tracking control method with swing suppression for 4-DOF tower crane systems. Mech. Syst. Signal Process. 2019, 123, 426–442. [Google Scholar] [CrossRef]
- Roy, S.; Lee, J.; Baldi, S. A new adaptive-robust design for time delay control under state-dependent stability condition. IEEE Trans. Control Syst. Technol. 2020, 29, 420–427. [Google Scholar] [CrossRef]
- Wang, H.; Liu, P.X.; Bao, J.; Xie, X.J.; Li, S. Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 972–983. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Chen, Y.; Liu, L.; Fang, Y. Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller. IEEE Trans. Cybern. 2021, 52, 9519–9534. [Google Scholar] [CrossRef]
- Chertopolokhov, V.; Andrianova, O.; Hernandez-Sanchez, A.; Mireles, C.; Poznyak, A.; Chairez, I. Averaged sub-gradient integral sliding mode control design for cueing end-effector acceleration of a two-link robotic arm. ISA Trans. 2022. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Ortiz, D.; Chairez, I.; Poznyak, A. Adaptive sliding-mode trajectory tracking control for state constraint master–slave manipulator systems. ISA Trans. 2022, 127, 273–282. [Google Scholar] [CrossRef]
- Chairez, I.; Utkin, V. Electrocardiographically Signal Simulator Based on a Sliding Mode Controlled Buck DC-DC Power Converter. IFAC-PapersOnLine 2022, 55, 419–424. [Google Scholar] [CrossRef]
- Moaveni, B.; Rashidi Fathabadi, F.; Molavi, A. Fuzzy control system design for wheel sliding prevention and tracking of desired speed profile in electric trains. Asian J. Control 2022, 24, 388–400. [Google Scholar] [CrossRef]
- Sabo, A.; Abdul Wahab, N.I.; Othman, M.L.; Mohd Jaffar, M.Z.; Beiranvand, H.; Acikgoz, H. Application of a neuro-fuzzy controller for single machine infinite bus power system to damp low-frequency oscillations. Trans. Inst. Meas. Control 2021, 43, 3633–3646. [Google Scholar] [CrossRef]
- Yonezawa, A.; Yonezawa, H.; Kajiwara, I. Parameter tuning technique for a model-free vibration control system based on a virtual controlled object. Mech. Syst. Signal Process. 2022, 165, 108313. [Google Scholar] [CrossRef]
- Labiod, S.; Guerra, T.M. Adaptive Fuzzy Control for Multivariable Nonlinear Systems with Indefinite Control Gain Matrix and Unknown Control Direction. IFAC-PapersOnLine 2020, 53, 8019–8024. [Google Scholar] [CrossRef]
- Zhu, Z.; Pan, Y.; Zhou, Q.; Lu, C. Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. IEEE Transactions on Fuzzy Systems 2020, 29, 1273–1283. [Google Scholar] [CrossRef]
- Rao, V.V.; Kumar, A.A. Artificial neural network and adaptive neuro fuzzy control of direct torque control of induction motor for speed and torque ripple control. In Proceedings of the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11 May 2018; pp. 1416–1422. [Google Scholar]
- Anisimov, D.N.; Dang, T.S.; Dinh, V.N. Development of a microcontroller-based adaptive fuzzy controller for a two-wheeled self-balancing robot. Microsyst. Technol. 2018, 24, 3677–3687. [Google Scholar]
- Li, B.; Wang, S.; Fernandez, C.; Yu, C.; Xia, L.; Fan, Y. A linear recursive state of power estimation method based on fusion model of voltage and state of charge limitations. J. Energy Storage 2021, 40, 102583. [Google Scholar] [CrossRef]
- Aazami, R.; Heydari, O.; Tavoosi, J.; Shirkhani, M.; Mohammadzadeh, A.; Mosavi, A. Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability 2022, 14, 6183. [Google Scholar] [CrossRef]
- Iranmehr, H.; Aazami, R.; Tavoosi, J.; Shirkhani, M.; Azizi, A.R.; Mohammadzadeh, A.; Mosavi, A.H.; Guo, W. Modeling the Price of Emergency Power Transmission Lines in the Reserve Market Due to the Influence of Renewable Energies. Front. Energy Res. 2022, 9. [Google Scholar] [CrossRef]
- Tavoosi, J.; Mohammadzadeh, A.; Jermsittiparsert, K. A review on type-2 fuzzy neural networks for system identification. Soft Comput. 2021, 25, 7197–7212. [Google Scholar] [CrossRef] [PubMed]
- Tavoosi, J.; Shirkhani, M.; Azizi, A.; Din, S.U.; Mohammadzadeh, A.; Mobayen, S. A hybrid approach for fault location in power distributed networks: Impedance-based and machine learning technique. Electr. Power Syst. Res. 2022, 210, 108073. [Google Scholar] [CrossRef]
- Janková, Z.; Dostál, P. Type-2 fuzzy expert system approach for decision-making of financial assets and investing under different uncertainty. Math. Probl. Eng. 2021, 2021, 3839071. [Google Scholar] [CrossRef]
- Tavoosi, J.; Shirkhani, M.; Azizi, A. Control engineering solutions during epidemics: A review. Int. J. Model. Identif. Control 2021, 39, 97–106. [Google Scholar] [CrossRef]
- Seeliger, D.; De Groot, B.L. Protein thermostability calculations using alchemical free energy simulations. Biophys. J. 2010, 98, 2309–2316. [Google Scholar] [CrossRef] [Green Version]
- Rustum, R.; Kurichiyanil, A.M.J.; Forrest, S.; Sommariva, C.; Adeloye, A.J.; Zounemat-Kermani, M.; Scholz, M. Sustainability Ranking of Desalination Plants Using Mamdani Fuzzy Logic Inference Systems. Sustainability 2020, 12, 631. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Liu, F.; San, H.; Wu, X.; Wang, W. Hybrid optimal kinematic parameter identification for an industrial robot based on BPNN-PSO. Complexity 2018, 2018, 4258676. [Google Scholar] [CrossRef]
- He, S.; Ma, L.; Yan, C.; Lee, C.H.; Hu, P. Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment. Int. J. Adv. Manuf. Technol. 2019, 102, 1037–1050. [Google Scholar] [CrossRef]
- Gan, Y.; Duan, J.; Dai, X. A calibration method of robot kinematic parameters by drawstring displacement sensor. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419883072. [Google Scholar] [CrossRef]
- Brahmi, A.; Saad, M.; Brahmi, B.; Bojairami, I.E.; Gauthier, G.; Ghommam, J. Robust adaptive tracking control for uncertain nonholonomic mobile manipulator. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2022, 236, 395–405. [Google Scholar] [CrossRef]
- Leoro, J.; Hsiao, T. Motion Planning of Nonholonomic Mobile Manipulators with Manipulability Maximization Considering Joints Physical Constraints and Self-Collision Avoidance. Appl. Sci. 2021, 11, 6509. [Google Scholar] [CrossRef]
Parameter | Description | Value (m) |
---|---|---|
b | The distance of wheel to the robot center line | 0.180 |
d | The distance of wheels axis and robot center of mass | 0.115 |
r | Wheel radius | 0.05 |
The distance of point P to the robot center of mass | 0.1 | |
Link 1 length | 0.15 | |
Link 2 length | 0.1 | |
Location of the link 1 center of mass | 0.075 | |
Location of the link 2 center of mass | 0.05 |
Parameter | Description | Value |
---|---|---|
Wheel inertia | 0.0002 kg. | |
The mass of wheel | 0.160 kg | |
Body inertia in Z direction | 0.280 kg. | |
The mass of body | 0.1 kg | |
Link 1 inertia in Z direction | 0.15 kg. | |
The mass of link 1 | 0.1 kg | |
Link 2 inertia in X/Y directions | 0.075 kg. | |
The mass of link 2 | 0.05 kg |
10 | 20 | 0.01 | 10 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Shaker, A.; Salem, M.S. Automatic Control of a Mobile Manipulator Robot Based on Type-2 Fuzzy Sliding Mode Technique. Mathematics 2022, 10, 3773. https://doi.org/10.3390/math10203773
Xu X, Shaker A, Salem MS. Automatic Control of a Mobile Manipulator Robot Based on Type-2 Fuzzy Sliding Mode Technique. Mathematics. 2022; 10(20):3773. https://doi.org/10.3390/math10203773
Chicago/Turabian StyleXu, Xin, Ahmed Shaker, and Marwa S. Salem. 2022. "Automatic Control of a Mobile Manipulator Robot Based on Type-2 Fuzzy Sliding Mode Technique" Mathematics 10, no. 20: 3773. https://doi.org/10.3390/math10203773
APA StyleXu, X., Shaker, A., & Salem, M. S. (2022). Automatic Control of a Mobile Manipulator Robot Based on Type-2 Fuzzy Sliding Mode Technique. Mathematics, 10(20), 3773. https://doi.org/10.3390/math10203773