LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications †
<p>Schematic of atmospheric optical communication system based on the 4PPM–QPSK–FTN modulation mode.</p> "> Figure 2
<p>RNN network structure unfolded along the time line.</p> "> Figure 3
<p>Diagram of the LSTM network.</p> "> Figure 4
<p>Diagram of the LSTM attention decoder.</p> "> Figure 5
<p>Internal calculation process diagram of the attention mechanism.</p> "> Figure 6
<p>BER under different atmospheric turbulence channels.</p> "> Figure 7
<p>Relationship between BER and roll factor: (<b>a</b>) LSTM attention and BP decoding algorithms; (<b>b</b>) LSTM attention and MLSE decoding algorithms.</p> "> Figure 8
<p>Relationship of BER and acceleration factor <math display="inline"><semantics> <mi>τ</mi> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. System Model
3. LSTM Attention Decoder
4. Simulation Analysis
5. Computational Complexity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ke, X.Z.; Jing, Y.K. Far-field laser spot image detection for use under atmospheric turbulence. Opt. Eng. 2020, 59, 016103. [Google Scholar] [CrossRef]
- Wu, P.; Ke, X.; Li, M.; Zhang, Q. Performance and equilibrium experiment of a multiband CAP modulation system in wireless optical communication. Opt. Commun. 2019, 434, 128–135. [Google Scholar] [CrossRef]
- Mazo, J. Faster-than-nyquist signaling. Bell Syst. Tech. J. 1975, 54, 1451–1462. [Google Scholar] [CrossRef]
- Bahl, L.R.; Cocke, J.; Jelinek, F.; Raviv, J. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory 1974, 20, 284–287. [Google Scholar] [CrossRef] [Green Version]
- Matar, M.O.; Jana, M.; Mitra, J.; Lampe, L.; Lis, M.; Soc, I.C. A Turbo Maximum-a-Posteriori Equalizer for Faster-than-Nyquist Applications. In Proceedings of the 28th IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, AR, USA, 3–6 May 2020; pp. 167–171. [Google Scholar]
- Cococcioni, M.; Rossi, F.; Ruffaldi, E.; Saponara, S.; de Dinechin, B.D. Novel Arithmetics in Deep Neural Networks Signal Processing for Autonomous Driving: Challenges and Opportunities. IEEE Signal Process. Mag. 2021, 38, 97–110. [Google Scholar] [CrossRef]
- Amirabadi, M.A.; Kahaei, M.H.; Nezamalhosseni, S.A. Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system. IET Optoelectron. 2022, 16, 93–105. [Google Scholar] [CrossRef]
- Li, S.; Yuan, W.; Yuan, J.; Bai, B.; Ng, D.W.K.; Hanzo, L. Time-domain vs. frequency-domain equalization for FTN signaling. IEEE Trans. Veh. Technol. 2020, 69, 9174–9179. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, F.; Ma, X.; Zhang, S. Deep learning-based channel estimation for doubly selective fading channels. IEEE Access 2019, 7, 36579–36589. [Google Scholar] [CrossRef]
- Huang, H.; Yang, J.; Huang, H.; Song, Y.; Gui, G. Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Trans. Veh. Technol. 2018, 67, 8549–8560. [Google Scholar] [CrossRef]
- Hu, F.; Holguin-Lerma, J.A.; Mao, Y.; Zou, P.; Shen, C.; Ng, T.K.; Ooi, B.S.; Chi, N. Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode. Opto-Electron. Adv. 2020, 3, 4–14. [Google Scholar] [CrossRef]
- Liang, S.; Jiang, Z.; Qiao, L.; Lu, X.; Chi, N. Faster-than-Nyquist pre-coded CAP modulation visible light communication system based on nonlinear weighted look-up table pre-distortion. IEEE Photonics J. 2018, 10, 7900709. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, long short-term memory, fully connected deep neural networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 4580–4584. [Google Scholar]
- Lai, S.; Li, M. Recurrent Neural Network Assisted Equalization for FTN Signaling. In Proceedings of the IEEE International Conference on Communications (IEEE ICC)/Workshop on NOMA for 5G and Beyond, Electr Network, Dublin, Ireland, 7–11 June 2020. [Google Scholar]
- Gong, B. Research on Demodulation Technology of OAM Atmospheric Laser Communication System Based on Deep Learning. Master’s Thesis, Beijing University of Posts and Telecommunications, Beijing, China, June 2021. [Google Scholar]
- Mao, S.Y. Research on Two Kinds of Aliasing Signals Translation Based on Recurrent Neural Network. Master’s Thesis, Xidian University, Xi’an, China, April 2020. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Xia, J.; Cao, M.; Wang, H.; Zhou, H.; Qiu, Y. Deep Learning Based Signal Detection for Hybrid Modulated Faster-than-Nyquist Optical Wireless Communications. In Proceedings of the 2022 IEEE 14th International Conference on Advanced Infocomm Technology (ICAIT), Chongqing, China, 8–11 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 107–110. [Google Scholar]
- Zhu, X.; Kahn, J.M. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 2002, 50, 1293–1330. [Google Scholar]
- Wang, Z.; Shi, W.; Wu, P. PDM-DPSK-MPPM hybrid modulation for multi-hop free-space optical communication. Optoelectron. Lett. 2016, 12, 450–454. [Google Scholar]
- Sharma, K.; Grewal, S.K. A new ABER approximation of FSO system using PPM–GMSK hybrid modulation scheme under weak turbulence. Optik 2021, 248, 168129. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Cao, M.; Bao, Z. Performance Evaluation of MPPM-Coded Wireless Optical MIMO System with Combined Effects over Correlated Fading Channel. Int. J. Antennas Propag. 2020, 2020, 7983812. [Google Scholar] [CrossRef]
- Lin, X.; Liu, R.; Hu, W.; Li, Y.; Zhou, X.; He, X. A deep convolutional network demodulator for mixed signals with different modulation types. In Proceedings of the 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Orlando, FL, USA, 6–10 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 893–896. [Google Scholar]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.I.; Park, R.H. Residual LSTM attention network for object tracking. IEEE Signal Process. Lett. 2018, 25, 1029–1033. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Huang, C.; Gao, M. Object detection network based on feature fusion and attention mechanism. Future Internet 2019, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Shao, W.; Liu, J.; Yu, L.; Qian, Z. Automatic modulation classification scheme based on LSTM with random erasing and attention mechanism. IEEE Access 2020, 8, 154290–154300. [Google Scholar] [CrossRef]
- Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 2019, 337, 325–338. [Google Scholar] [CrossRef]
- Tian, F.; Wang, L.; Xia, M. Signals Recognition by CNN Based on Attention Mechanism. Electronics 2022, 11, 2100. [Google Scholar] [CrossRef]
- Song, P.; Gong, F.; Li, Q.; Li, G.; Ding, H. Receiver design for faster-than-Nyquist signaling: Deep-learning-based architectures. IEEE Access 2020, 8, 68866–68873. [Google Scholar] [CrossRef]
- Xu, T.; Xu, T.; Darwazeh, I. Deep Learning for Interference Cancellation in Non-orthogonal Signal Based Optical Communication Systems. In Proceedings of the Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 241–248. [Google Scholar]
- Ouyang, X.; Wu, L. Faster-than-Nyquist rate communication via convolutional neural networks-based demodulators. J. Southeast Univ. 2016, 32, 6–10. [Google Scholar]
- Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L.; Hopen, C.Y. Laser Beam Scintillation with Applications; SPIE Press: Bellingham, WA, USA, 2001. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
size of data | roll-off factor | 0.6 | |
training dataset | acceleration factor | 0.8 | |
test dataset | learning rate | 0.002 | |
batch size | 100 | neurons | 256 |
dropout | 0.05 | layer | 10 |
cycle index | 50 | activation function | Softmax |
SNR range | 15 dB–30 dB |
Learning Rate | Accuracy Rate |
---|---|
0.00002 | 88.54371% |
0.00020 | 98.96791% |
0.00200 | 99.99514% |
0.02000 | 99.67210% |
Cycle Index | Accuracy Rate |
---|---|
20 | 98.976791% |
30 | 99.995140% |
40 | 99.995151% |
50 | 99.995201% |
60 | 99.989432% |
70 | 98.673576% |
Hidden Layers | Accuracy Rate |
---|---|
6 | 97.632746% |
7 | 98.921215% |
8 | 99.950473% |
9 | 99.091451% |
20 dB | 22 dB | 24 dB | 26 dB | 28 dB | 30 dB | |
---|---|---|---|---|---|---|
LSTM | 99.009921% | 99.027905% | 99.229922% | 99.289812% | 99.354935% | 99.389937% |
LSTM attention | 99.914991% | 99.949994% | 99.984998% | 99.989994% | 99.989998% | 99.994998% |
Network | Cycle Index | Training Data | Training Time |
---|---|---|---|
BP | 50 | 50,000 | 2166.38 s |
LSTM attention | 50 | 50,000 | 188.09 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, M.; Yao, R.; Xia, J.; Jia, K.; Wang, H. LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications. Sensors 2022, 22, 8992. https://doi.org/10.3390/s22228992
Cao M, Yao R, Xia J, Jia K, Wang H. LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications. Sensors. 2022; 22(22):8992. https://doi.org/10.3390/s22228992
Chicago/Turabian StyleCao, Minghua, Ruifang Yao, Jieping Xia, Kejun Jia, and Huiqin Wang. 2022. "LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications" Sensors 22, no. 22: 8992. https://doi.org/10.3390/s22228992
APA StyleCao, M., Yao, R., Xia, J., Jia, K., & Wang, H. (2022). LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications. Sensors, 22(22), 8992. https://doi.org/10.3390/s22228992