Analysis of Ultrasonic Machining Characteristics under Dynamic Load
<p>Electromechanical equivalent model of the piezoelectric transducer.</p> "> Figure 2
<p>The main research content.</p> "> Figure 3
<p>The experiment platform.</p> "> Figure 4
<p>(<b>a</b>) Piezoelectric transducer impedance analysis admittance circle; (<b>b</b>) Piezoelectric transducer impedance analysis amplitude phase curve.</p> "> Figure 5
<p>Admittance circle of the piezoelectric transducer under different load.</p> "> Figure 6
<p>Amplitude-phase curve of the piezoelectric transducer under different load.</p> "> Figure 7
<p>(<b>a</b>) Amplitude value characteristics when <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math> is a resistive load; (<b>b</b>) Phase frequency characteristics when <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math> is a resistive load.</p> "> Figure 8
<p>(<b>a</b>) Amplitude value characteristics when <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math> is a capacitive load; (<b>b</b>) Phase frequency characteristics when <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math> is a capacitive load.</p> "> Figure 9
<p>(<b>a</b>) Amplitude value characteristics when <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math> is a inductive load; (<b>b</b>) Phase frequency characteristics when <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math> is a inductive load.</p> "> Figure 10
<p>(<b>a</b>) <math display="inline"><semantics> <msub> <mi>f</mi> <mi>s</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math>; (<b>c</b>) <span class="html-italic">R</span> and <math display="inline"><semantics> <msub> <mi>Z</mi> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 11
<p>(<b>a</b>) The intersection mapping of <math display="inline"><semantics> <msub> <mi>f</mi> <mi>s</mi> </msub> </semantics></math>; (<b>b</b>) The intersection mapping of <math display="inline"><semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics></math>; (<b>c</b>) The intersection mapping of <span class="html-italic">R</span>.</p> "> Figure 12
<p>(<b>a</b>) Two-dimensional intersection of <math display="inline"><semantics> <msub> <mi>f</mi> <mi>s</mi> </msub> </semantics></math>; (<b>b</b>) Two-dimensional intersection of <math display="inline"><semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics></math>; (<b>c</b>) Two-dimensional intersection of <span class="html-italic">R</span>.</p> "> Figure 13
<p>(<b>a</b>) Mapping curve intersection diagram; (<b>b</b>) Inscribed circle diagram; (<b>c</b>) Circumcircle diagram.</p> "> Figure 14
<p>(<b>a</b>) Load and real part by an inscribed circle; (<b>b</b>) Load and real part by a circumcircle; (<b>c</b>) Load and real part by average.</p> "> Figure 15
<p>(<b>a</b>) Load and imaginary part by an inscribed circle; (<b>b</b>) Load and imaginary part by a circumcircle; (<b>c</b>) Load and imaginary part by average.</p> "> Figure 16
<p>(<b>a</b>) <math display="inline"><semantics> <msubsup> <mi>f</mi> <mi>s</mi> <mi>e</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>f</mi> <mi>s</mi> <mi>s</mi> </msubsup> </semantics></math> by inscribed circle; (<b>b</b>) <math display="inline"><semantics> <msubsup> <mi>f</mi> <mi>s</mi> <mi>e</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>f</mi> <mi>s</mi> <mi>s</mi> </msubsup> </semantics></math> by circumcircle; (<b>c</b>) <math display="inline"><semantics> <msubsup> <mi>f</mi> <mi>s</mi> <mi>e</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>f</mi> <mi>s</mi> <mi>s</mi> </msubsup> </semantics></math> by average.</p> "> Figure 17
<p>(<b>a</b>) <math display="inline"><semantics> <msubsup> <mi>f</mi> <mn>1</mn> <mi>e</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>f</mi> <mn>1</mn> <mi>s</mi> </msubsup> </semantics></math> by inscribed circle; (<b>b</b>) <math display="inline"><semantics> <msubsup> <mi>f</mi> <mn>1</mn> <mi>e</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>f</mi> <mn>1</mn> <mi>s</mi> </msubsup> </semantics></math> by circumcircle; (<b>c</b>) <math display="inline"><semantics> <msubsup> <mi>f</mi> <mn>1</mn> <mi>e</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>f</mi> <mn>1</mn> <mi>s</mi> </msubsup> </semantics></math> by average.</p> "> Figure 18
<p>(<b>a</b>) <math display="inline"><semantics> <msup> <mi>R</mi> <mi>e</mi> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi>R</mi> <mi>s</mi> </msup> </semantics></math> by inscribed circle; (<b>b</b>) <math display="inline"><semantics> <msup> <mi>R</mi> <mi>e</mi> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi>R</mi> <mi>s</mi> </msup> </semantics></math> by circumcircle; (<b>c</b>) <math display="inline"><semantics> <msup> <mi>R</mi> <mi>e</mi> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi>R</mi> <mi>s</mi> </msup> </semantics></math> by average.</p> ">
Abstract
:1. Introduction
1.1. The Current State of the Research
1.2. Contribution and Basic Organization of This Paper
2. Equivalent Model of Piezoelectric Transducer
3. Equivalent Model of the Piezoelectric Transducer about the Load and Impedance
3.1. System Platform Introduction
3.2. Loading Characteristic Analysis of Piezoelectric Transducer
3.3. Cross-Value Mapping Method Map the Load Change in Ultrasonic to the Impedance Change
3.4. An Equivalent Model of Piezoelectric Transducer about the Impedance and Load Is Established
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Micus, S.; Haupt, M.; Gresser, G.T. Automatic Joining of Electrical Components to Smart Textiles by Ultrasonic Soldering. Sensors 2021, 21, 545. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, Q.; Li, Y.; Song, X.; Liu, C.; Ta, D.; Wang, W. High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion. Chin. Phys. B 2021, 30, 014302. [Google Scholar] [CrossRef]
- Peng, J.; Ma, L.; Li, X.; Tang, H.; Li, Y.; Chen, S. A Novel Synchronous Micro Motor for Intravascular Ultrasound Imaging. IEEE Trans. Biomed. Eng. 2019, 66, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Schuster, G.; Doctor, S.; Bond, L. A system for high-resolution, nondestructive, ultrasonic imaging of weld grains. IEEE Trans. Instrum. Meas. 2004, 53, 1526–1532. [Google Scholar] [CrossRef]
- Shi, L.; Jia, L.; Liu, C.; Sun, C.; Liu, S.; Wu, G. A Miniaturized Ultrasonic Sugar Concentration Detection System Based on Piezoelectric Micromachined Ultrasonic Transducers. IEEE Trans. Instrum. Meas. 2022, 71, 7503509. [Google Scholar] [CrossRef]
- Heinz, S.; Wagner, G.; Eifler, D. Ultrasonic Welding of Wires and Cables. JOM 2012, 64, 421–426. [Google Scholar] [CrossRef]
- Shaikh, U.F.; Das, A.; Barai, A.; Masters, I. Electro-Thermo-Mechanical Behaviours of Laser Joints for Electric Vehicle Battery Interconnects. In Proceedings of the 2019 Electric Vehicles International Conference (EV), Bucharest, Romania, 3–4 October 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.C.; Bi, G.; Nai, M.L.S.; Wei, J. Enhanced welding efficiency in laser welding of highly reflective pure copper. J. Mater. Process. Technol. 2015, 216, 287–293. [Google Scholar] [CrossRef]
- de Leon, M.; Shin, H.S. Review of the advancements in aluminum and copper ultrasonic welding in electric vehicles and superconductor applications. J. Mater. Process. Technol. 2022, 307, 117691. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Zhang, G.; Ni, C.; Lin, B. Review of ultrasonic vibration-assisted machining in advanced materials. Int. J. Mach. Tools Manuf. 2020, 156, 103594. [Google Scholar] [CrossRef]
- Matsuoka, S.; Imai, H. Direct welding of different metals used ultrasonic vibration. J. Mater. Process. Technol. 2009, 209, 954–960. [Google Scholar] [CrossRef]
- Qin, S.; Zhu, L.; Wiercigroch, M.; Ren, T.; Hao, Y.; Ning, J.; Zhao, J. Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling. Int. J. Mech. Sci. 2022, 227, 107375. [Google Scholar] [CrossRef]
- Long, Z.L.; Zou, J.J.; Zhao, S.; Sun, W.D.; Sun, Z.D. Numerical modeling and vibration control of transducer in ultrasonically assisted machining. In Proceedings of the 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Xi’an, China, 21–24 October 2016; pp. 283–287. [Google Scholar] [CrossRef]
- Zhao, B.; Chang, B.; Yuan, L.; Li, P. Influence of force load on the stability of ultrasonic longitudinal–torsional composite drilling system. Int. J. Adv. Manuf. Technol. 2020, 106, 891–905. [Google Scholar] [CrossRef]
- Lin, S. Load characteristics of high power sandwich piezoelectric ultrasonic transducers. Ultrasonics 2005, 43, 365–373. [Google Scholar] [CrossRef]
- Wei, X.; Yang, Y.; Yao, W.; Zhang, L. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration. Sensors 2017, 17, 2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.S.; Wu, Z.J. Characteristics of piezoelectric ultrasonic transducer with electric load modifying frequency. J. Mech. Eng. 2017, 53, 46–51. [Google Scholar] [CrossRef]
- Zhang, J.G.; Long, Z.L.; Ma, W.J.; Hu, G.H.; Li, Y.M. Electromechanical Dynamics Model of Ultrasonic Transducer in Ultrasonic Machining Based on Equivalent Circuit Approach. Sensors 2019, 19, 1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sammoura, F.; Kim, S.G. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 990–998. [Google Scholar] [CrossRef]
- Meng, X.; Lin, S. Analysis of a Cascaded Piezoelectric Ultrasonic Transducer with Three Sets of Piezoelectric Ceramic Stacks. Sensors 2019, 19, 580. [Google Scholar] [CrossRef]
- Zhe, L.; Jin, Y.; Bian, P.; Zhao, B. Influence of the Load on the Characteristics of Ultrasonic Machining Acoustic Systems. Aviat. Precis. Manuf. Technol. 2012, 48, 10–13. [Google Scholar] [CrossRef]
- Long, Z.; Zhang, J.; Wu, X.; Liu, Y.; Zhou, X.; Li, Z. Impedance Modeling of Ultrasonic Transducers Used in Heavy Aluminum Wire Bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1107–1115. [Google Scholar] [CrossRef]
- Zhao, B.; Bie, W.; Wang, X.; Chen, F.; Wang, Y.; Chang, B. The effects of thermo-mechanical load on the vibrational characteristics of ultrasonic vibration system. Ultrasonics 2019, 98, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tsai, M. Dynamic modeling of thickness-mode piezoelectric transducer using the block diagram approach. Ultrasonics 2011, 51, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Dong, L.; Zhu, Y. Research on output characteristics of piezoelectric energy harvester with different circuit load. In Proceedings of the 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 19–21 November 2021; pp. 560–563. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Liang, C.; Tian, Y.; Zhao, X.; Zhang, D. Design of High-Frequency Ultrasonic Transducers with Flexure Decoupling Flanges for Thermosonic Bonding. IEEE Trans. Ind. Electron. 2016, 63, 2304–2312. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lin, S.; Fu, Z.; Yong, W. Coupled Vibration Analysis for a Composite Cylindrical Piezoelectric Ultrasonic Transducer. Acta Acust. United Acust. 2013, 99, 201–207. [Google Scholar] [CrossRef]
- Kim, Y.H.; Jin, K.H. Design and Implementation of a Rectangular-Type Contactless Transformer. IEEE Trans. Ind. Electron. 2011, 58, 5380–5384. [Google Scholar] [CrossRef]
Name of Variable | Variable Symbol |
---|---|
Simulation | |
Experiment | |
Simulation | |
Experiment | |
Simulation R | |
Experiment R | |
Real part of impedance | |
Imaginary part of impedance | |
Pressure load | F |
Component | Parameters | The Replaced Parameters | ||||
---|---|---|---|---|---|---|
Ceramic | ||||||
Rear cover | ||||||
Front cover |
Component | Attributes | Value |
---|---|---|
Ceramic | Material | PZT-4 |
Density (kg/m3) | 7600 | |
Number of chips | 4 | |
Piezoelectric constant | ||
Rear cover | Material | Aluminum, Steel |
Density (kg/m3) | 4370 | |
Young’s modulus (N/m2) | ||
Length (mm) | 32 | |
Front cover | Material | Rigid aluminum |
Density (kg/m3) | 2700 | |
Young’s modulus (N/m2) | ||
Length (mm) | 54 |
46 | 48 | 49 | 50 | 50 | 87 | 89 | 90 | |||
152 | 169 | 188 | 208 | 219 | 704 | 718 | 731 |
63 | 67 | 67 | 69 | 66 | 106 | 110 | 114 | |||
146 | 162 | 181 | 200 | 213 | 695 | 707 | 721 |
55 | 57 | 58 | 60 | 58 | 96 | 99 | 102 | |||
149 | 166 | 184 | 204 | 216 | 699 | 712 | 726 |
(Hz) | ||||||||||
(Hz) | ||||||||||
(Hz) | ||||||||||
(Hz) | ||||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhao, X.; Chen, S.; Chen, H.; Ni, P.; Zhang, F. Analysis of Ultrasonic Machining Characteristics under Dynamic Load. Sensors 2022, 22, 8576. https://doi.org/10.3390/s22218576
Chen Z, Zhao X, Chen S, Chen H, Ni P, Zhang F. Analysis of Ultrasonic Machining Characteristics under Dynamic Load. Sensors. 2022; 22(21):8576. https://doi.org/10.3390/s22218576
Chicago/Turabian StyleChen, Zhangping, Xinghong Zhao, Shixing Chen, Honghuan Chen, Pengfei Ni, and Fan Zhang. 2022. "Analysis of Ultrasonic Machining Characteristics under Dynamic Load" Sensors 22, no. 21: 8576. https://doi.org/10.3390/s22218576
APA StyleChen, Z., Zhao, X., Chen, S., Chen, H., Ni, P., & Zhang, F. (2022). Analysis of Ultrasonic Machining Characteristics under Dynamic Load. Sensors, 22(21), 8576. https://doi.org/10.3390/s22218576