Impact of Wedge Parameters on Ultrasonic Lamb Wave Liquid-Level Sensor
<p>Lamb wave sound field.</p> "> Figure 2
<p>Schematic diagram of liquid-level measurement with ultrasonic Lamb waves. <span class="html-italic">R<sub>x</sub></span> = receiver transducer; <span class="html-italic">T<sub>x</sub></span> = transmitter transducer; <span class="html-italic">α</span> = ultrasonic incidence angle; <span class="html-italic">Z<sub>W</sub></span> = water acoustic impedance; <span class="html-italic">Z<sub>A</sub></span> = air acoustic impedance.</p> "> Figure 3
<p>Dispersion curves of aluminum alloy: (<b>a</b>) phase velocity dispersion curve; (<b>b</b>) group velocity dispersion curve.</p> "> Figure 4
<p>Physical images of PMMA wedges.</p> "> Figure 5
<p>The impact of different ultrasonic incident angles on the experiment.</p> "> Figure 6
<p>The impact of ultrasonic field on experimental results.</p> "> Figure 7
<p>The impact of ultrasonic wavelength on experimental results.</p> ">
Abstract
:1. Introduction
2. Theory and Methods
2.1. Lamb Wave Dispersion Characteristics
2.2. Lamb Wave Sound Field Characteristics
2.3. Establishment of Experimental Platform
3. Results and Discussion
3.1. Selection of Lamb Wave Working Modes
3.2. Selection of Wedge Thickness
3.3. Impact of Wavelength on Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zakaria, Z.; Idroas, M.; Samsuri, A.; Adam, A.A. Ultrasonic instrumentation system for Liquefied Petroleum Gas level monitoring. J. Nat. Gas Sci. Eng. 2017, 45, 428–435. [Google Scholar] [CrossRef]
- Yin, L.; Qin, Y.; Liu, X.-W. A new interface weak-capacitance detection ASIC of capacitive liquid level sensor in the rocket. Mod. Phys. Lett. B 2017, 31, 1750302. [Google Scholar] [CrossRef]
- Lata, A.; Kumar, B.; Mandal, N. Design and development of a level transmitter using force resistive sensor as a primary sensing element. IET Sci. Meas. Technol. 2018, 12, 118–125. [Google Scholar] [CrossRef]
- Kumar, B.; Mandal, N. Study of an Electro-Optic Technique of Level Transmitter Using Mach-Zehnder Interferometer and Float as Primary Sensing Elements. IEEE Sens. J. 2016, 16, 4211–4218. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Y.; Jin, B.; Wang, Y.; Zhang, M. Quasi-Distributed Optical Fiber Sensor for Liquid-Level Measurement. IEEE Photonics J. 2017, 9, 6805107. [Google Scholar] [CrossRef]
- Berketis, K.; Tzetzis, D.; Hogg, P. Noncontact ultrasonics used for impact damage detection on long-term water-immersed GFRP composites. Int. J. Microstruct. Mater. Prop. 2009, 4, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, S. A method of the untouched ultrasonic liquid level measurement with high precision. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010. [Google Scholar]
- Jun, L. Impact of pressure and temperature upon ultrasonic velocity in two sorts of hydraulic oil. Tech. Acoust. 2007, 26, 1155. [Google Scholar]
- Haohao, H.; Junqiao, X. A method of liquid level measurement based on ultrasonic echo characteristics. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010. [Google Scholar]
- Guangjian, G. Examination of ultrasonic Lamb waves for detection of flaws in the bottom plate of oil tank. Appl. Acoust. 2012, 31, 42–48. [Google Scholar]
- Rai, A.; Mitra, M. A transfer learning approach for damage diagnosis in composite laminated plate using Lamb waves. Smart Mater. Struct. 2022, 31, 065002. [Google Scholar] [CrossRef]
- Lowe, P.S.; Scholehwar, T.; Yau, J.; Kanfoud, J.; Gan, T.H.; Selcuk, C. Flexible Shear Mode Transducer for Structural Health Monitoring Using Ultrasonic Guided Waves. IEEE Trans. Ind. Inform. 2017, 14, 2984–2993. [Google Scholar] [CrossRef] [Green Version]
- Moll, J.; Rezk-Salama, C.; Schulte, R.; Klinkert, T.; Fritzen, C.-P.; Kolb, A. Interactive simulation and visualization of lamb wave propagation in isotropic and anisotropic structures. J. Phys. Conf. Ser. 2011, 305, 012095. [Google Scholar] [CrossRef]
- Spratt, W.K.; Vetelino, J.F. Torsional acoustic waveguide sensor for temperature and liquid level. In Proceedings of the Torsional Acoustic Waveguide Sensor for Temperature and Liquid Level, Besancon, France, 20–24 April 2009; pp. 850–854. [Google Scholar]
- Balasubramaniam, K.; Subhash, N.N. Fluid level sensing using ultrasonic waveguides. Insight-Non-Destr. Test. Cond. Monit. 2014, 56, 607–612. [Google Scholar]
- Yu, L.; Tian, Z. Case study of guided wave propagation in a one-side water-immersed steel plate. Case Stud. Nondestruct. Test. Eval. 2015, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Chen, S.; Lei, Z.; Yao, K.; Tan, C.Y. Direct-Write Piezoelectric Ultrasonic Transducers for Non-Destructive Testing of Metal Plates. IEEE Sens. J. 2017, 17, 3354–3361. [Google Scholar] [CrossRef]
- Zamanov, A.D.; Agasiyev, E.R. Dispersion of lamb waves in a three-layer plate made from compressible materials with finite initial deformations. Mech. Compos. Mater. 2011, 46, 583–592. [Google Scholar] [CrossRef]
- Kim, Y.; Han, J. Development of hybrid one-dimensional finite elementanalytical method for analysis of lamb wave propagation characteristics in composit panels. J. Acoust. Soc. Am. 2010, 127, 1770. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, P.; Lowe, M.; Cawley, P. The effect of dispersion on long-range inspection using ultrasonic guided waves. NDT E Int. 2001, 34, 1–9. [Google Scholar] [CrossRef]
- Matsuda, Y.; Yoshioka, M.; Uchida, T. Absolute Hydrophone Calibration to 40 MHz Using Ultrasonic Far-Field. Mater. Trans. 2014, 55, 1030–1033. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, G. Frequency and Temperature Characteristics of an Ultrasonic Method for Measuring the Specific Gravity of Lead-Acid Battery Electrolyte. Jpn. J. Appl. Phys. 2012, 51, 026601. [Google Scholar] [CrossRef]
- Nikolaevtsev, V.A.; Suchkov, S.G.; Selifonov, A.V.; Suchkov, D.D.; Suchkova, S.M. Efficiency of lamb wave excitation by wedge-shaped ultrasonic transducer. In Proceedings of the 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Russia, 3–6 October 2016. [Google Scholar]
- Wilcox, P.D.; Dalton, R.P.; Lowe, M.J.S. Mode and Transducer Selection for Long Range Lamb Wave Inspection. Key Eng. Mater. 1999, 167–168, 152–161. [Google Scholar]
- Lijian, Y.; Haice, S.U.; Songwei, G.; Yanhao, X. A Method for Increasing Efficiency of Electromagnetic Ultrasonic Lamb Wave Transducer at Tank Bottom Plate. Oil & Gas Storage and Transportation. 2015. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-YQCY201508008.htm (accessed on 29 May 2022).
- Rose, J.L.; Nagy, P.B. Ultrasonic Waves in Solid Media. J. Acoust. Soc. Am. 2000, 107, 1807–1808. [Google Scholar] [CrossRef]
- Deighton, M.O.; Gillespie, A.B.; Pike, R.B.; Watkins, R.D. Mode conversion of Rayleigh and Lamb waves to compression waves at a metal-liquid interface. Ultrasonics 1981, 19, 249–258. [Google Scholar] [CrossRef]
- Breakey, D.E.S.; Jordan, P.; Cavalieri, A.V.G.; Olivier, L.; Rodríguez, D. Near-field wavepackets and the far-field sound of a subsonic jet. In Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 27–29 May 2013. [Google Scholar]
- Lukosevicius, A.; Jurkonis, R.; Jurkonis, R. Ultrasonic near field in lossy media: Method of simulation. Ultrasound 2014, 27, 33–37. [Google Scholar]
- Chen, Q.; Wang, X.; Li, M.; Mao, J. Sound field of an electromagnetic acoustic transducer. Chin. J. Acoust. 2011, 103, 44–54. [Google Scholar]
- Liu, J.-x.; Wang, Z.-q.; Li, G.-f.; Wang, N.-h. Acoustic method for obtaining the pressure reflection coefficient using a half-wave layer. Ultrasonics 2011, 51, 359–368. [Google Scholar] [CrossRef]
- Gao, W.; Liu, W.; Hu, Y.; Wang, J. Study of Ultrasonic Near-Field Region in Ultrasonic Liquid-Level Monitoring System. Micromachines 2020, 11, 763. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.J. Wave reflection and transmission by porous breakwaters: A new analytical solution. Coast. Eng. 2013, 78, 46–52. [Google Scholar] [CrossRef]
- Pilarski, A.; Rose, J.L. Lamb wave mode selection concepts for interfacial weakness analysis. J. Nondestruct. Eval. 1992, 11, 237–249. [Google Scholar] [CrossRef]
Symbol | Specification | Initial Values |
---|---|---|
MC | Container material | Aluminum alloy (Al) |
MB | Wedge material | PMMA |
E | Al Young’s modulus | 70 GPa |
ρ | Al density | 2.7 g/cm3 |
v | Al Poisson’s ratio | 0.3 |
cL1 | Ultrasound velocity | 2775 m/s |
DS | Transducer diameter | 10 mm |
f0 | Working frequency | 1 MHz, 500 kHz |
T | Experimental temperature | 20 °C |
Angle | Liquid Level | V1 (mV) | V2 (mV) | V3 (mV) | |∆E| (mV) | Vd (mV) | |
---|---|---|---|---|---|---|---|
0° | 12 cm | 116 | 112 | 116 | 114.67 | 1.78 | 182.00 |
Air | 296 | 298 | 296 | 296.67 | 0.89 | ||
15° | 12 cm | 356 | 352 | 356 | 354.67 | 1.78 | 310.67 |
Air | 652 | 656 | 688 | 665.33 | 15.11 | ||
30° | 12 cm | 784 | 832 | 872 | 829.33 | 30.22 | 680.67 |
Air | 1450 | 1500 | 1580 | 1510 | 46.67 | ||
45° | 12 cm | 172 | 184 | 190 | 182 | 6.67 | 170.00 |
Air | 338 | 356 | 362 | 352 | 9.33 | ||
60° | 12 cm | 592 | 616 | 600 | 602.67 | 8.89 | 312.00 |
Air | 912 | 920 | 912 | 914.67 | 3.56 |
Specification | Initial Values (mm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sound Field | Near-Field Region | Far-Field Region | ||||||||||
Height | 0 | 1 | 2 | 3 | 4 | 5 | 6.2 | 7.11 | 8.53 | 9.66 | 11.04 | 12.21 |
L1 | 4 | 5.2 | 6.34 | 7.3 | 8.68 | 9.84 | 11.23 | 12.6 | 14.04 | 15.42 | 16.81 | 18.21 |
Wavelength | - | 0 | +1/2 λ | +λ | +3/2 λ | +2 λ | +5/2 λ | +3 λ | ||||
Material | PMMA | |||||||||||
Width | 20 | |||||||||||
Angle α | 30° |
Specification | Initial Values (mm) | |||||
---|---|---|---|---|---|---|
Height | 6.2 | 7.11 | 8.53 | 9.66 | 11.04 | 12.21 |
L1 | 11.23 | 12.6 | 14.04 | 15.42 | 16.81 | 18.21 |
L1/(1/4λ) | 8.09 | 9.08 | 10.11 | 11.11 | 12.11 | 13.12 |
Λ = 5.55 mm | Even multiple | Odd multiple | Even multiple | Odd multiple | Even multiple | Odd multiple |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Gao, W.; Liu, W.; Zhang, H.; Guo, R. Impact of Wedge Parameters on Ultrasonic Lamb Wave Liquid-Level Sensor. Sensors 2022, 22, 5046. https://doi.org/10.3390/s22135046
Xue W, Gao W, Liu W, Zhang H, Guo R. Impact of Wedge Parameters on Ultrasonic Lamb Wave Liquid-Level Sensor. Sensors. 2022; 22(13):5046. https://doi.org/10.3390/s22135046
Chicago/Turabian StyleXue, Weizhao, Wanjia Gao, Wenyi Liu, Huixin Zhang, and Ruiqing Guo. 2022. "Impact of Wedge Parameters on Ultrasonic Lamb Wave Liquid-Level Sensor" Sensors 22, no. 13: 5046. https://doi.org/10.3390/s22135046
APA StyleXue, W., Gao, W., Liu, W., Zhang, H., & Guo, R. (2022). Impact of Wedge Parameters on Ultrasonic Lamb Wave Liquid-Level Sensor. Sensors, 22(13), 5046. https://doi.org/10.3390/s22135046