[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Lamb wave mode selection concepts for interfacial weakness analysis

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Utilization of specific Lamb wave modes with special cross-sectional wave structures is proposed for the detection of interfacial weakness between an adhesive and adherent. Such an approach is based on plate wave behavior in a three-layered medium with imperfections on the individual interfaces. Selection of appropriate modes and frequencies for adhesion weakness detection is obtained by numerical analysis of the dispersion relations and comparisons of the dispersive curves for perfect, welded and imperfect, smooth boundary conditions. The inspection parameters were evaluated by an analysis of displacement, stress, and power distributions across the three-layered asymmetric adhesive structure. Special selection criteria are proposed. Utilization of dispersive curves do not always provide expected increased sensitivity as in the cross-sectional field distribution approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Tattersall, The ultrasonic pulse-echo technique as applied to adhesion testing,J. Phys. D 6819–832 (1973).

    Google Scholar 

  2. A. Pilarski, The coefficient of reflection of ultrasonic waves from an adhesive bond interface,Arch. Acoust. 841–54 (1983).

    Google Scholar 

  3. J. M. Baik and R. B. Thompson, Ultrasonic scattering from imperfect interfaces: A quasi-static model,J. Nondestruct. Eval. 4177–196 (1984).

    Google Scholar 

  4. J. B. Nestleroth, J. L. Rose, D. Lecuru, and E. Budillon, inReview of Progress in Quantitative Nondestructive Evaluation (Vol. 6B), D. O. Thompson and D. Chimenti, eds. (Plenum, New York), 1987, pp. 1787–1795.

    Google Scholar 

  5. A. V. Clark, Jr. and S. D. Hart,Mater. Eval. 40866 (1982).

    Google Scholar 

  6. S. I. Rokhlin and D. Marom, Study of adhesive bonds using low-frequency oblique incident ultrasonic waves,J. Acoust. Soc. Am. 80245–258 (1986).

    Google Scholar 

  7. A. Pilarski and J. L. Rose. A transverse wave ultrasonic oblique incidence technique for interfacial weakness detection in adhesive bonds,J. Appl. Phys. 63300–302 (1988).

    Google Scholar 

  8. A. Pilarski and J. L. Rose, Ultrasonic oblique incidence for improved sensitivity interface weakness determination,NDT Int. 21241–246 (1988).

    Google Scholar 

  9. Y. Tsukahara and K. Ohira, Detection of smooth bondings of polymer coatings by ultrasonic spectroscopy,Ultrasonics 273–7 (1989).

    Google Scholar 

  10. A. Pilarski, J. L. Rose, and K. Balasubramaniam, The angular and frequency characteristics of reflectivity from a solid layer embedded between two solids with imperfect boundary conditions,J. Acoust. Soc. Am. 87532–542, (1990).

    Google Scholar 

  11. G. A. Budenkov, The investigation of the possibility of using interfacial waves (in Russian),Soviet J. NDT 226–35 (1974).

    Google Scholar 

  12. G. A. Alers and R. B. Thompson, Application of Trapped Modes in Layered Media to the Testing of Adhesive Bonds, in Proceedings of Ultrasonic Symposium IEEE, 1976, pp. 138–142.

  13. R. O. Claus and R. A. Kline, Adhesive bondline interrogation using Stoneley wave methods.J. Appl. Phys. 508066–8072 (1979).

    Google Scholar 

  14. A. Pilarski, Ultrasonic wave propagation in a layered medium under different boundary conditions,Arch. Acoust. 761–70 (1981).

    Google Scholar 

  15. A. Pilarski, Ultrasonic evaluation of the adhesion degree in layered joints,Mater. Eval. 43765–770 (1985).

    Google Scholar 

  16. A. Pilarski, Leaking Interface Waves in Ultrasonic NDE, in Proceedings of 20th World Conference of NDT, ASNT, Las Vegas, 1985, pp. 768–775.

    Google Scholar 

  17. J. L. Rose and A. Pilarski, Surface and plate waves in layered structures,Mater. Eval. 46596–605 (1988).

    Google Scholar 

  18. A. K. Mal, Guided waves in layered solids with interface zones,Int. J. Eng. Sci. 26873–881 (1988).

    Google Scholar 

  19. P. B. Nagy and L. Adler, New ultrasonic techniques to evaluate interfaces, inElastic Waves and Ultrasonic NDE, S. K. Datta, J. D. Achenbach, and Y. S. Rajapakse eds. (Elsevier Science Publishers, New York), pp. 229–239, (1990).

    Google Scholar 

  20. P.-C. Xu and S. K. Datta, Guided waves in a bonded plate: A parametric study,J. Appl. Phys. 676779–6786 (1990).

    Google Scholar 

  21. S. I. Rokhlin, Lamb wave interaction with lap-shear adhesive joints: Theory and experiment,J. Acoust. Soc. Am. 892758–2765 (1991).

    Google Scholar 

  22. S. I. Rokhlin, M. Hefets, and M. Rosen, An ultrasonic interface-wave method for predicting the strength of adhesive bonds,J. Appl. Phys. 52(4):2847–2851 (1981).

    Google Scholar 

  23. A. Pilarski, J. L. Rose, and D. Jiao, Transverse and plate waves for adhesion bond interface evaluation, inProceedings of 12th World Conference of NDT, J. Boogard and G. M. van Dijk, eds. (Elsevier Science Publishers, Amsterdam, 1989), pp. 836–841.

    Google Scholar 

  24. C. C. H. Guyott and P. Cawley, The ultrasonic vibration characteristics of adhesive joints,J. Acoust. Soc. Am. 83632–640 (1988).

    Google Scholar 

  25. T. R. Meeker and A. H. Meitzler, Guided wave propagation in elongated cylinders and plates, inPhysical Acoustics: Principles and Methods (Vol. IA), W. P. Mason, ed. (Academic Press, New York, 1964), pp. 11–166.

    Google Scholar 

  26. J. J. Ditri, J. L. Rose, and G. Chen, Mode selection criteria for defect detection optimization using Lamb waves, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, in press).

  27. N. M. Newmark, C. P. Siess, and I. M. Viest, Tests and analysis of composite beams with incomplete interaction,Proc. Soc. Exp. Stress Anal. 975–92 (1951).

    Google Scholar 

  28. L. M. Brekhovskikh,Waves in Layered Media (Academic Press, London, 1960).

    Google Scholar 

  29. J. D. Achenbach,Wave Propagation in Elastic Solids (North-Holland, Amsterdam, 1976).

    Google Scholar 

  30. S. I. Rokhlin and Y. J. Wang, Analysis of ultrasonic wave interaction with imperfect interface between solids,J. Acoust. Soc. Am. 89(2):503–515 (1991).

    Google Scholar 

  31. W. Wang and S. I. Rokhlin, Evaluation of interfacial properties in adhesive joints of aluminum alloys using angle-beam ultrasonic spectroscopy,J. Adhes. Sci. Technol. 5(8):647–666 (1991).

    Google Scholar 

  32. W. Ewing, W. Jardetsky, and F. Press,Elastic Waves in Layered Media (McGraw Hill, New York, 1957).

    Google Scholar 

  33. J. Achenbach and H. Epstein, Dynamic interaction of a layer and a half space,J. Eng. Mech. Div. 93, EM527–42 (1967).

    Google Scholar 

  34. A. H. Nayfeh and T. W. Taylor, Dynamic distribution of displacements and stresses in multi-layered fluid-loaded plates, inNew Directions in the NDE of Advanced Materials (Vol. MD-9), J. L. Rose and A. A. Tseng, eds. (ASME, New York, 1988), pp. 87–105.

    Google Scholar 

  35. M. Hattunen and M. Luukkala, An investigation of generalized Lamb waves using ultrasonic reflectivity measurements,J. Appl. Phys. 2257–263 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilarski, A., Rose, J.L. Lamb wave mode selection concepts for interfacial weakness analysis. J Nondestruct Eval 11, 237–249 (1992). https://doi.org/10.1007/BF00566414

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566414

Key words

Navigation