A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition
<p>Hierarchical classification scheme for ADL and Fall detection.</p> "> Figure 2
<p>Illustration of data augmentation. (X component of the accelerometer, lateral fall).</p> "> Figure 3
<p>CNN network for feature extraction and XGB classification stage.</p> "> Figure 4
<p>Network performance for different fall directions.</p> "> Figure 5
<p>Network performance for different fall Severity.</p> "> Figure A1
<p>Accelerometer and gyroscope measurements: forward hard fall.</p> "> Figure A2
<p>Sample of forward soft fall.</p> "> Figure A3
<p>Accelerometer and gyroscope measurements: backward hard fall.</p> "> Figure A4
<p>Accelerometer and gyroscope measurements: backward soft fall.</p> "> Figure A5
<p>Accelerometer and gyroscope measurements: lateral hard fall.</p> "> Figure A6
<p>Accelerometer and gyroscope measurements: lateral soft fall.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Data
4. Methodology
4.1. Data Pre-Processing
4.1.1. Windowing
4.1.2. Data Augmentation
4.2. Feature Extraction and Classification
5. Experimentation and Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- United Nations. Ageing. Available online: https://www.un.org/en/global-issues/ageing (accessed on 15 January 2022).
- National Institute of Aging. Global Aging|An Aging World: 2015. Available online: https://www.nia.nih.gov/research/dbsr/global-aging (accessed on 15 January 2022).
- Afable, R.; Averbeck, B.; Holmen, K.; Dziedzicki, R.; Nichols, A.; Schlegelmilch, J.; Caruso, D. When I’m 64: How Boomers Will Change Health Care. Available online: https://www.aha.org/guidesreports/2007-05-08-report-when-im-64-how-boomers-will-change-health-care (accessed on 15 January 2022).
- James, M.K.; Victor, M.C.; Saghir, S.M.; Gentile, P.A. Characterization of fall patients: Does age matter? J. Saf. Res. 2018, 64, 83–92. [Google Scholar] [CrossRef]
- Stevens, J.A.; Ballesteros, M.F.; Mack, K.A.; Rudd, R.A.; DeCaro, E.; Adler, G. Gender differences in seeking care for falls in the aged Medicare population. Am. J. Prev. Med. 2012, 43, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Morisod, J.; Coutaz, M. Post-fall syndrome: How to recognize and treat it? Rev. Med. Suisse 2007, 3, 2531–2532. [Google Scholar] [PubMed]
- Chaccour, K.; Darazi, R.; El Hassani, A.H.; Andres, E. From fall detection to fall prevention: A generic classification of fall-related systems. IEEE Sensors J. 2016, 17, 812–822. [Google Scholar] [CrossRef]
- De Lima, A.L.S.; Evers, L.J.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654. [Google Scholar] [CrossRef] [Green Version]
- El Halabi, N.; Daou, R.A.Z.; Achkar, R.; Hayek, A.; Börcsök, J. Monitoring system for prediction and detection of epilepsy seizure. In Proceedings of the 2019 Fourth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, Lebanon, 3–5 July 2019; pp. 1–7. [Google Scholar]
- Fleming, J.; Brayne, C. Inability to get up after falling, subsequent time on floor, and summoning help: Prospective cohort study in people over 90. BMJ 2008, 337, a2227. [Google Scholar] [CrossRef] [Green Version]
- Muralidharan, V.; Vijayalakshmi, V. A Real-Time Approach of Fall Detection and Rehabilitation in Elders Using Kinect Xbox 360 and Supervised Machine Learning Algorithm. In Inventive Computation and Information Technologies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 119–138. [Google Scholar]
- Liu, C.; Lv, J.; Zhao, X.; Li, Z.; Yan, Z.; Shi, X. A Novel Key Point Trajectory Model for Fall Detection from RGB-D Videos. In Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 5–7 May 2021; pp. 1021–1026. [Google Scholar]
- Tian, Y.; Lee, G.H.; He, H.; Hsu, C.Y.; Katabi, D. RF-based fall monitoring using convolutional neural networks. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–24. [Google Scholar] [CrossRef]
- Butt, F.S.; Blunda, L.L.; Wagner, M.F.; Schäfer, J.; Medina-Bulo, I.; Gómez-Ullate, D. Fall detection from electrocardiogram (ecg) signals and classification by deep transfer learning. Information 2021, 12, 63. [Google Scholar] [CrossRef]
- Xi, X.; Tang, M.; Miran, S.M.; Luo, Z. Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors. Sensors 2017, 17, 1229. [Google Scholar] [CrossRef]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Gibson, R.M.; Amira, A.; Ramzan, N.; Casaseca-de-la Higuera, P.; Pervez, Z. Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic. Appl. Soft Comput. 2016, 39, 94–103. [Google Scholar] [CrossRef]
- Hussain, F.; Hussain, F.; Ehatisham-ul Haq, M.; Azam, M.A. Activity-aware fall detection and recognition based on wearable sensors. IEEE Sensors J. 2019, 19, 4528–4536. [Google Scholar] [CrossRef]
- Koo, B.; Kim, J.; Nam, Y.; Kim, Y. The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions. Sensors 2021, 21, 4638. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.Y.; Huang, H.Y.; Liu, K.C.; Liu, C.P.; Chan, C.T.; Hsu, S.J.P. Multiphase identification algorithm for fall recording systems using a single wearable inertial sensor. Sensors 2021, 21, 3302. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.; Afzal, H.; Mehmood, K. NT-FDS—A Noise Tolerant Fall Detection System Using Deep Learning on Wearable Devices. Sensors 2021, 21, 2006. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Villaseñor, L.; Ponce, H.; Brieva, J.; Moya-Albor, E.; Núñez-Martínez, J.; Peñafort-Asturiano, C. UP-fall detection dataset: A multimodal approach. Sensors 2019, 19, 1988. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Alarifi, A.; Alwadain, A. Killer heuristic optimized convolution neural network-based fall detection with wearable IoT sensor devices. Measurement 2021, 167, 108258. [Google Scholar] [CrossRef]
- Li, H.; Shrestha, A.; Heidari, H.; Le Kernec, J.; Fioranelli, F. Bi-LSTM network for multimodal continuous human activity recognition and fall detection. IEEE Sensors J. 2019, 20, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Chelli, A.; Pätzold, M. A machine learning approach for fall detection and daily living activity recognition. IEEE Access 2019, 7, 38670–38687. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Chu, C.H.; Cheng, L.; Kim, J. Applying deep learning technology for automatic fall detection using mobile sensors. Biomed. Signal Process. Control. 2022, 72, 103355. [Google Scholar] [CrossRef]
- Vavoulas, G.; Chatzaki, C.; Malliotakis, T.; Pediaditis, M.; Tsiknakis, M. The mobiact dataset: Recognition of activities of daily living using smartphones. In Proceedings of the International Conference on Information and Communication Technologies for Ageing Well and e-Health, Rome, Italy, 21–22 April 2016; Volume 2, pp. 143–151. [Google Scholar]
- Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.; Rivera, C.C. SmartFall: A smartwatch-based fall detection system using deep learning. Sensors 2018, 18, 3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şengül, G.; Karakaya, M.; Misra, S.; Abayomi-Alli, O.O.; Damaševičius, R. Deep learning based fall detection using smartwatches for healthcare applications. Biomed. Signal Process. Control. 2022, 71, 103242. [Google Scholar] [CrossRef]
- Syed, A.S.; Kumar, A.; Sierra-Sosa, D.; Elmaghraby, A.S. Determining Fall direction and severity using SVMs. In Proceedings of the 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 9–11 December 2020; pp. 1–7. [Google Scholar]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. A hierarchical approach to activity recognition and fall detection using wavelets and adaptive pooling. Sensors 2021, 21, 6653. [Google Scholar] [CrossRef]
- Santoyo-Ramón, J.A.; Casilari, E.; Cano-García, J.M. A Study of One-Class Classification Algorithms for Wearable Fall Sensors. Biosensors 2021, 11, 284. [Google Scholar] [CrossRef]
- Zurbuchen, N.; Wilde, A.; Bruegger, P. A machine learning multi-class approach for fall detection systems based on wearable sensors with a study on sampling rates selection. Sensors 2021, 21, 938. [Google Scholar] [CrossRef]
- Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online fall detection using recurrent neural networks on smart wearable devices. IEEE Trans. Emerg. Top. Comput. 2020, 9, 1276–1289. [Google Scholar] [CrossRef]
- Casilari, E.; Lora-Rivera, R.; García-Lagos, F. A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets. Sensors 2020, 20, 1466. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Escano, R.; Castro, F.M.; Cozar, J.R.; Marin-Jimenez, M.J.; Guil, N.; Casilari, E. A cross-dataset deep learning-based classifier for people fall detection and identification. Comput. Methods Programs Biomed. 2020, 184, 105265. [Google Scholar] [CrossRef]
- Khojasteh, S.B.; Villar, J.R.; Chira, C.; González, V.M.; De la Cal, E. Improving fall detection using an on-wrist wearable accelerometer. Sensors 2018, 18, 1350. [Google Scholar] [CrossRef] [Green Version]
- Huynh, Q.T.; Tran, B.Q. Time-Frequency Analysis of Daily Activities for Fall Detection. Signals 2021, 2, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Gao, Q.; Ma, X.; Feng, X.; Wang, H. Device-free simultaneous wireless localization and activity recognition with wavelet feature. IEEE Trans. Veh. Technol. 2016, 66, 1659–1669. [Google Scholar] [CrossRef]
- Ellouzi, C.; Trkov, M. Fast Trip Detection Using Continuous Wavelet Transform. Available online: https://www.dynamicwalking2021.org/s/Chadi-Ellouzi-Ellouzi_Chadi_DW2021pdf.pdf (accessed on 15 January 2022).
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Singh, S.P.; Wang, L.; Gupta, S.; Goli, H.; Padmanabhan, P.; Gulyás, B. 3D deep learning on medical images: A review. Sensors 2020, 20, 5097. [Google Scholar] [CrossRef]
- Latif, S.; Rana, R.; Khalifa, S.; Jurdak, R.; Qadir, J.; Schuller, B.W. Survey of deep representation learning for speech emotion recognition. IEEE Trans. Affect. Comput. 2021. [Google Scholar] [CrossRef]
- Praticò, F.G.; Fedele, R.; Naumov, V.; Sauer, T. Detection and monitoring of bottom-up cracks in road pavement using a machine-learning approach. Algorithms 2020, 13, 81. [Google Scholar] [CrossRef] [Green Version]
- Saho, K.; Hayashi, S.; Tsuyama, M.; Meng, L.; Masugi, M. Machine Learning-Based Classification of Human Behaviors and Falls in Restroom via Dual Doppler Radar Measurements. Sensors 2022, 22, 1721. [Google Scholar] [CrossRef]
- Kakarla, J.; Isunuri, B.V.; Doppalapudi, K.S.; Bylapudi, K.S.R. Three-class classification of brain magnetic resonance images using average-pooling convolutional neural network. Int. J. Imaging Syst. Technol. 2021, 31, 1731–1740. [Google Scholar] [CrossRef]
- Yang, J.; Xie, F.; Fan, H.; Jiang, Z.; Liu, J. Classification for dermoscopy images using convolutional neural networks based on region average pooling. IEEE Access 2018, 6, 65130–65138. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Baidu-Research. Benchmarking Deep Learning Operations on Different Hardware|Inference Benchmark. Available online: https://github.com/baidu-research/DeepBench#inference-benchmark (accessed on 15 January 2022).
- Yhdego, H.; Li, J.; Paolini, C.; Audette, M. Wearable Sensor Gait Analysis of Fall Detection using Attention Network. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 3137–3141. [Google Scholar]
SisFall | Assigned | Assigned | ||
---|---|---|---|---|
Activity/Fall Code | Brief Description | Trials | Activity/Fall Name | Activity/Fall Label |
D01 | Walking (slowly) | 1 | Walking | W |
D02 | Walking (quickly) | 1 | Walking | W |
D03 | Jogging (slowly) | 1 | Jogging | J |
D04 | Jogging (quickly) | 1 | Jogging | J |
D05 | Walking stairs (slowly) | 5 | Walking | W |
D06 | Walking stairs (quickly) | 5 | Walking | W |
D07 | Sit on chair (slowly) | 5 | Sit | S |
D08 | Sit on chair (quickly) | 5 | Sit | S |
D09 | Sit on low height chair (slowly) | 5 | Sit | S |
D10 | Sit on low height chair (quickly) | 5 | Sit | S |
D11 | Sitting (collapse down) | 5 | Sit | S |
D12 | Sitting (lying slowly) | 5 | Sit | S |
D13 | Sitting (lying quickly) | 5 | Sit | S |
D15 | Standing | 5 | Standing | SB |
D16 | Standing | 5 | Standing | SB |
F01 | Fall Forward (slip) | 5 | Forward Hard Fall | FHF |
F02 | Fall backward (slip) | 5 | Backward Hard Fall | BHF |
F03 | Lateral fall while walking (slip) | 5 | Lateral Hard Fall | LHF |
F04 | Fall forward while walking (trip) | 5 | Forward Hard Fall | FHF |
F05 | Fall forward while jogging (trip) | 5 | Forward Hard Fall | FHF |
F06 | Vertical fall while walking (faint) | 5 | Forward Soft Fall | FSF |
F07 | Fall while walking (faint)(dampened with support) | 5 | Lateral Soft Fall | LSF |
F08 | Fall forward while trying to get up | 5 | Forward Soft Fall | FSF |
F09 | Lateral fall while trying to get up | 5 | Lateral Soft Fall | LSF |
F10 | Fall forward when trying to sit down | 5 | Forward Soft Fall | FSF |
F11 | Fall backward when trying to sit down | 5 | Backward Soft Fall | BSF |
F12 | Lateral Fall when trying to sit down | 5 | Lateral Soft Fall | LSF |
F13 | Fall forward while sitting (fainting/sleeping) | 5 | Forward Soft Fall | FSF |
F14 | Fall backward while sitting (fainting/sleeping) | 5 | Backward Soft Fall | BSF |
F15 | Lateral while sitting (fainting/sleeping) | 5 | Lateral Soft Fall | LSF |
Activity | Precision (%) | Sensitivity/Recall (%) | Specificity (%) | F1-Score (%) |
---|---|---|---|---|
BHF | 100 | 75.00 | 100 | 85.71 |
FHF | 76.19 | 88.89 | 99.01 | 82.05 |
LHF | 75.00 | 75.00 | 99.71 | 75.00 |
BSF | 95.83 | 95.83 | 99.90 | 95.83 |
FSF | 90.24 | 77.08 | 99.60 | 83.15 |
LSF | 86.79 | 95.83 | 99.30 | 91.09 |
J | 96.71 | 96.71 | 99.01 | 96.71 |
S | 96.77 | 96.77 | 99.57 | 96.77 |
SB | 91.18 | 83.78 | 99.70 | 87.32 |
W | 97.21 | 97.63 | 97.77 | 97.42 |
Average | 90.59 | 88.25 | 99.36 | 89.11 |
Activity | Precision (%) | Sensitivity/Recall (%) | Specificity (%) | F1-Score (%) |
---|---|---|---|---|
BHF | 100 | 91.67 | 100 | 95.65 |
FHF | 85.37 | 97.22 | 99.41 | 90.91 |
LHF | 72.73 | 66.67 | 99.70 | 69.57 |
BSF | 100 | 95.83 | 100 | 97.87 |
FSF | 92.86 | 81.25 | 99.71 | 86.67 |
LSF | 89.58 | 89.58 | 99.50 | 89.58 |
ADL | 99.54 | 100 | 97.78 | 99.77 |
Average | 91.44 | 88.89 | 99.44 | 90.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition. Sensors 2022, 22, 2547. https://doi.org/10.3390/s22072547
Syed AS, Sierra-Sosa D, Kumar A, Elmaghraby A. A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition. Sensors. 2022; 22(7):2547. https://doi.org/10.3390/s22072547
Chicago/Turabian StyleSyed, Abbas Shah, Daniel Sierra-Sosa, Anup Kumar, and Adel Elmaghraby. 2022. "A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition" Sensors 22, no. 7: 2547. https://doi.org/10.3390/s22072547
APA StyleSyed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. (2022). A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition. Sensors, 22(7), 2547. https://doi.org/10.3390/s22072547