Implementation of Hemispherical Resonator Gyroscope with 3 × 3 Optical Interferometers for Analysis of Resonator Asymmetry
<p>Schematic of a 3 × 3 optical interferometer system. The lights reflected at the sample and the reference arms make interference at the coupler, which is then measured by two detectors simultaneously.</p> "> Figure 2
<p>Lumped element models of hemispherical resonators; (<b>a</b>) ideal symmetric resonator model, and (<b>b</b>) general resonator model having asymmetry in stiffness and damping. <span class="html-italic">M</span>: mass, <span class="html-italic">c</span>: damping constant, Δ<span class="html-italic">c</span>: damping constant difference, <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi>τ</mi> </msub> </mrow> </semantics></math>: damping axis angle, <span class="html-italic">k</span>: spring constant, Δ<span class="html-italic">k</span>: spring constant difference, <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi>ω</mi> </msub> </mrow> </semantics></math>: spring axis angle, <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>x</mi> </msub> </mrow> </semantics></math>: driving force in <span class="html-italic">x</span> direction, <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>y</mi> </msub> </mrow> </semantics></math>: driving force in <span class="html-italic">y</span> direction.</p> "> Figure 3
<p>The trace of the ratio <span class="html-italic">y/x</span> in Equation (16) simulated with various resonator parameters and drawn in a complex plane. The trace is plotted when <span class="html-italic">B</span>, <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, <span class="html-italic">a</span>, and <span class="html-italic">b</span> are (<b>a</b>) 1, 0°, 0, and 0; (<b>b</b>) 1, 0°, 10, and 5; (<b>c</b>) 2, 0°, 10, and 5; (<b>d</b>) 2, 60°, 10, and 5, respectively. The trace is always on a straight line and the line is determined by the four real constants <span class="html-italic">B</span>, <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, <span class="html-italic">a</span>, and <span class="html-italic">b</span> of Equation (16). The dotted line is the trace made with just the previous conditions.</p> "> Figure 4
<p>Analysis of the <span class="html-italic">y/x</span> trace for an asymmetric resonator. The <span class="html-italic">y/x</span> ratios collected with various angular rates form a straight line in a complex plane. The plot shows that the distance from the origin to the nearest point on the line is <span class="html-italic">Bb</span>, and the angular rate giving the nearest point is −<span class="html-italic">a</span>, and the distance from the nearest point to the <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi mathvariant="normal">z</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> point, along the line, is <span class="html-italic">Ba</span>.</p> "> Figure 5
<p>The photographs of (<b>a</b>) the hemispherical resonator and (<b>b</b>) the rotating part of the implemented HRG system. A general consumer wineglass was used as the resonator. A sheet of thin gold foil was attached and used as the electrode for activating the resonator.</p> "> Figure 6
<p>The HRG system implemented with 3 × 3 optical interferometers. The system operates in the non-feedback open-loop (NFOL) mode. RM: reference mirror, SA: sample arm, PC: polarization controller, HR: hemispherical resonator, E: electrode, FC: fiber coupler, OC: optical circulator, FG: function generator, AMP: amplifier, C: collimator, L: lens.</p> "> Figure 7
<p>The displacements induced by the vibrations of two fundamental modes of a hemispherical resonator derived by a single actuator. The system was rotated by a constant rate of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi mathvariant="normal">z</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>4.19</mn> <mo>°</mo> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>. A phase difference of 61.8° between two modes was measured.</p> "> Figure 8
<p>The experimental results: (<b>a</b>) the plot of amplitude ratios <span class="html-italic">y/x</span> of Equation (20) measured with various angular rates, and (<b>b</b>) the fitted straight line characterizing the resonator. From the fitting with a straight line, the 4 real constants characterizing the resonator are extracted as <span class="html-italic">B</span> = 0.318, <math display="inline"><semantics> <mi>θ</mi> </semantics></math> = −22.84°, <span class="html-italic">a</span> = 1.033°/s, and <span class="html-italic">b</span> = 3.944°/s.</p> "> Figure 9
<p>The comparison of the applied angular rate and the measured angular rate. They are well matched with the coefficient of determination of <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="normal">R</mi> <mn>2</mn> </msup> </mrow> </semantics></math> = 0.9994.</p> "> Figure 10
<p>The plot of Allan deviations made with the implemented HRG. The measurements have been made for 2 h at room temperature without temperature control. The bias stability was 2.093°/h, which corresponds to an industrial-grade gyroscope.</p> "> Figure 11
<p>The amplitude ratio <span class="html-italic">y/x</span> measured at several angular rates: (<b>a</b>) the magnitude and (<b>b</b>) the phase of the ratio. The magnitude variation is not linear to the applied angular rate, and does not vanish at any rate. The phase varies with the angular rate but the sign of the phase is not changed exactly at the zero rate.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. 3 × 3 Optical Interferometer
2.2. Analysis of Symmetry Problems in a Hemispherical Resonator
2.2.1. Lumped Model of a Hemispherical Resonator
2.2.2. Ideal Symmetric Resonator
2.2.3. General Asymmetric Resonator
2.2.4. Extracting the Applied Angular Rate with Asymmetric Resonator
3. Experiments
3.1. Hemispherical Resonator
3.2. Experimental Setup
4. Results
4.1. Measurements of Vibrations of Two Fundamental Resonant Modes
4.2. Angular Rotation Rate Extraction
4.3. Bias Stability Measurement
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rozelle, D.M. The Hemispherical Resonator Gyro: From Wineglass to the Planets. Spaceflight Mech. 2009, 134, 1–26. [Google Scholar]
- Ahamed, M.; Senkal, D.; Shkel, A. Effect of annealing on mechanical quality factor of fused quartz hemispherical resonator. In Proceedings of the 2014 International Symposium on Inertial Sensors and Systems (ISISS), Laguna Beach, CA, USA, 25–26 February 2014. [Google Scholar]
- Pai, P.; Chowdhury, F.; Mastrangelo, C.; Tabib-Azar, M. MEMS-based hemispherical resonator gyroscopes. In Proceedings of the 2012 IEEE Sensors, Taipei, Taiwan, 28–31 October 2012. [Google Scholar]
- Wei, Z.; Yi, G.; Huo, Y.; Qi, Z.; Xu, Z. The Synthesis Model of Flat-Electrode Hemispherical Resonator Gyro. Sensors 2019, 19, 1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.; Yang, R.; Zhao, W.; He, X.; Li, S.; Ding, Y. Research on the Precession Characteristics of Hemispherical Resonator Gyro. Complexity 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, D.; Wang, Y.; Liu, J.; Wu, S.; Qu, T.; Yang, K.; Luo, H. Monolithic Cylindrical Fused Silica Resonators with High Q Factors. Sensors 2016, 16, 1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Hong, S.; Kim, Y.; Lee, S. A planar vibratory gyroscope using electromagnetic force. Sens. Actuators A Phys. 1998, 65, 101–108. [Google Scholar] [CrossRef]
- Qiu, B.; Wang, J.; Li, P. Full Digital Control of Hemispherical Resonator Gyro Under Force-to-Rebalance Mode. IEEE Sens. J. 2015, 15, 71–75. [Google Scholar] [CrossRef]
- Xu, Z.; Xi, B.; Yi, G.; Wang, D. A Novel Model for Fully Closed-Loop System of Hemispherical Resonator Gyroscope Under Force-to-Rebalance Mode. IEEE Trans. Instrum. Meas. 2020, 69, 9918–9930. [Google Scholar] [CrossRef]
- Lee, J.; Yun, S.; Rhim, J. Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope. Sensors 2016, 16, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Guo, C.; Mao, L.; Xiang, J.; Huang, G.; Yuan, T. Monolithically 3-D Printed Hemispherical Resonator Waveguide Filters With Improved Out-of-Band Rejections. IEEE Access 2018, 6, 57030–57048. [Google Scholar] [CrossRef]
- Li, Y.; Luo, B.; Wang, X.; Wu, W. Quadrature control of Hemispherical Resonator Gyro based on FPGA. In Proceedings of the EEE 2011 10th International Conference on Electronic Measurement & Instruments, Chengdu, China, 15–18 August 2011. [Google Scholar]
- Hong, S. Compensation of nonlinear thermal bias drift of Resonant Rate Sensor using fuzzy logic. Sens. Actuators A Phys. 1999, 78, 143–148. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W.; Fang, Z.; Luo, B.; Li, Y.; Jiang, Q. Temperature Drift Compensation for Hemispherical Resonator Gyro Based on Natural Frequency. Sensors 2012, 12, 6434–6446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trusov, A.; Phillips, M.; Mccammon, G.; Rozelle, D.; Meyer, A. Continuously self-calibrating CVG system using hemispherical resonator gyroscopes. In Proceedings of the 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS) Proceedings, Hapuna Beach, HI, USA, 23–26 March 2015. [Google Scholar]
- Jia, Y.; Jiao, W.; Lihuang, X.; Min, Z.; Tianfu, H. Linearity analysis of a hemispherical resonator gyro (HRG) based on force-rebalance mode. J. Phys. Ser. 2021, 1846, 012017. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, H.; Liu, F.; Su, Y.; Li, C. High sensitivity rate-integrating hemispherical resonator gyroscope with dead area compensation for damping asymmetry. Sci. Rep. 2021, 11, 2195. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Qu, T.; Pan, Y.; Jia, Y.; Fan, Z.; Yang, K.; Yuan, J.; Luo, H. Optical and Electrical Method Characterizing the Dynamic Behavior of the Fused Silica Cylindrical Resonator. Sensors 2019, 19, 2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annovazzi-Lodi, V.; Merlo, S.; Norgia, M.; Spinola, G.; Vigna, B.; Zerbini, S. Optical detection of the coriolis force on a silicon micromachined gyroscope. J. Microelectromechanical Syst. 2003, 12, 540–549. [Google Scholar] [CrossRef]
- He, G.; Gordenker, R.; Woo, J.; Nees, J.; Shiari, B.; Nagourney, T.; Cho, J.; Najafi, K. Laser Self-Mixing Interferometry for Precision Displacement Measurement in Resonant Gyroscopes. In Proceedings of the 2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Naples, FL, USA, 1–5 April 2019. [Google Scholar]
- Park, S.; Lee, J.; Kim, Y.; Lee, B. Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer Based on 3 × 3 Fiber-Optic Coupler. Sensors 2020, 20, 2665. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Hong, S.; Kim, J. The Implementation and Experiments of Open-Loop Cylindrical Vibratory Gyroscope. J. Control. Autom. Syst. Eng. 2004, 10, 669–672. [Google Scholar]
- Putty, M. A Micromachined Vibrating Ring Gyroscope. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 1995; pp. 10–13. [Google Scholar]
- Senkal, D.; Shkel, A. Whole Angle MEMs Gyroscopes Challenges and Opportunities, 1st ed; WILEY & Sons: Hoboken, NJ, USA, 2020; pp. 7–55. [Google Scholar]
- Guide to Comparing Gyro and IMU Technologies-Micro-Electro-Mechanical Systems and Fiber Optic Gyros. Available online: https://caclase.co.uk/wp-content/uploads/2016/11/Guide-to-Comparing-Gyros-0914.pdf (accessed on 23 January 2022).
- Cho, J.; Najafi, K. A high-q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015. [Google Scholar]
- Cho, J.; Woo, J.; Yan, J.; Peterson, R.; Najafi, K. A high-Q birdbath resonator gyroscope (BRG). In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013. [Google Scholar]
- Shi, Y.; Xi, X.; Li, B.; Chen, Y.; Wu, Y.; Xiao, D.; Wu, X.; Lu, K. Micro Hemispherical Resonator Gyroscope with Teeth-Like Tines. IEEE Sens. J. 2021, 21, 13098–13106. [Google Scholar] [CrossRef]
- F-Series Gyroscope. Available online: http://www.innalabs.com/f-series-gyroscope?hsLang=en (accessed on 20 February 2022).
- CVG-HT. Available online: http://www.innalabs.com/cvg-ht?hsLang=en (accessed on 20 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Cho, B.; Lee, H.; Yoon, T.; Lee, B. Implementation of Hemispherical Resonator Gyroscope with 3 × 3 Optical Interferometers for Analysis of Resonator Asymmetry. Sensors 2022, 22, 1971. https://doi.org/10.3390/s22051971
Kim M, Cho B, Lee H, Yoon T, Lee B. Implementation of Hemispherical Resonator Gyroscope with 3 × 3 Optical Interferometers for Analysis of Resonator Asymmetry. Sensors. 2022; 22(5):1971. https://doi.org/10.3390/s22051971
Chicago/Turabian StyleKim, Myeongseop, Bobae Cho, Hansol Lee, Taeil Yoon, and Byeongha Lee. 2022. "Implementation of Hemispherical Resonator Gyroscope with 3 × 3 Optical Interferometers for Analysis of Resonator Asymmetry" Sensors 22, no. 5: 1971. https://doi.org/10.3390/s22051971
APA StyleKim, M., Cho, B., Lee, H., Yoon, T., & Lee, B. (2022). Implementation of Hemispherical Resonator Gyroscope with 3 × 3 Optical Interferometers for Analysis of Resonator Asymmetry. Sensors, 22(5), 1971. https://doi.org/10.3390/s22051971