Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer Based on 3 × 3 Fiber-Optic Coupler
<p>Schematic of the Michelson interferometer, based on a 3 × 3 fiber-optic coupler. Col: collimator, D: photodetector, P: fiber-optic coupler port.</p> "> Figure 2
<p>Lissajous trajectory of the data sets measured at two photodetectors, when the optical path-length difference (OPD) changes by 2<math display="inline"><semantics> <mi>π</mi> </semantics></math> in <a href="#sensors-20-02665-f001" class="html-fig">Figure 1</a>. <math display="inline"><semantics> <mi>a</mi> </semantics></math> and <math display="inline"><semantics> <mi>b</mi> </semantics></math> are the AC amplitudes of the interference signals, and <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>a</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>b</mi> </msub> </mrow> </semantics></math> are the semi-major axis and semi-minor axis of the ellipse; <math display="inline"><semantics> <mi>α</mi> </semantics></math> is the rotating angle.</p> "> Figure 3
<p>Displacement measurement system implemented with a 3 × 3 fiber-optic coupler-based interferometer. Col: collimator, D: photodetector, L: lens, P: fiber-optic coupler port, PC: polarization controller, PZT: piezoelectric transducer.</p> "> Figure 4
<p>Lissajous trajectories of the data sets measured simultaneously at two photodetectors, with the OPD change in a 3 × 3 fiber-optic coupler-based interferometer. The trajectories of the data sets correspond to 10 revolutions. The measured data points are indicated by black dots and the red solid line is the fitted ellipse curve.</p> "> Figure 5
<p>Lissajous curve replotted with the reconstructed conjugate signal pair. The black dots are the reconstructed data sets and the red solid line is the fitted curve.</p> "> Figure 6
<p>Small displacement measurement; (<b>a</b>) the extracted displacement signal (black dots) and the fitted sinusoidal curve (red solid line), and (<b>b</b>) its FFT signal (black) and zero-padding signal (red). A 20 kHz sinusoidal oscillation was applied to the sample arm with a PZT.</p> ">
Abstract
:1. Introduction
2. Principle of Optical Quadrature Measurement and Ellipse Fitting
3. Experimental Methods
3.1. Parameter Extraction with Ellipse Fitting Method
3.2. System Stability Measurements
3.3. Small Displacement Measurement
4. Results
4.1. Parameter Extraction and Conjugate Signal Pair Reconstruction
4.2. Stability
4.3. Small Displacement Measurement
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Danzebrink, H.-U.; Koenders, L.; Wilkening, G.; Yacoot, A.; Kunzmann, H. Advances in Scanning Force Microscopy for Dimensional Metrology. CIRP Ann. 2006, 55, 841–878. [Google Scholar] [CrossRef]
- Park, S.; Rim, S.; Kim, Y.; Lee, B.H. Noncontact photoacoustic imaging based on optical quadrature detection with a multiport interferometer. Opt. Lett. 2019, 44, 2590. [Google Scholar] [CrossRef] [PubMed]
- Domingues, M.F.; Rodriguez, C.A.; Martins, J.; Tavares, C.; Marques, C.; Alberto, N.; André, P.; Antunes, P. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities. Opt. Fiber Technol. 2018, 42, 56–62. [Google Scholar] [CrossRef]
- Heydemann, P.L.M. Determination and correction of quadrature fringe measurement errors in interferometers. Appl. Opt. 1981, 20, 3382–3384. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Su, C.; Peng, G.-S. Correction of nonlinearity in one-frequency optical interferometry. Meas. Sci. Technol. 1996, 7, 520–524. [Google Scholar] [CrossRef]
- Hwang, J.; Park, C.-S. Quadrature-detection-error Compensation in a Sinusoidally Modulated Optical Interferometer Using Digital Signal Processing. Curr. Opt. Photonics 2019, 3, 204–209. [Google Scholar]
- Rerucha, S.; Buchta, Z.; Sarbort, M.; Lazar, J.; Cip, O. Detection of Interference Phase by Digital Computation of Quadrature Signals in Homodyne Laser Interferometry. Sensors 2012, 12, 14095–14112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorčič, P.; Požar, T.; Možina, J. Quadrature phase-shift error analysis using a homodyne laser interferometer. Opt. Express 2009, 17, 16322–16331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhang, S.; Tan, Y.; Sun, L. Self-mixing interferometry with mutual independent orthogonal polarized light. Opt. Lett. 2016, 41, 844–846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, S.; Tan, Y.; Sun, L. Common-path heterodyne self-mixing interferometry with polarization and frequency multiplexing. Opt. Lett. 2016, 41, 4827–4830. [Google Scholar] [CrossRef] [PubMed]
- Choma, M.A.; Yang, C.; Izatt, J.A. Instantaneous quadrature low-coherence interferometry with 3 × 3 fiber-optic couplers. Opt. Lett. 2003, 28, 2162–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Sherif, S.; Flueraru, C.; Chang, S. 3×3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography. Appl. Opt. 2008, 47, 2004. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, Y.; Liu, Z.; Han, M. Passive quadrature demodulation of an ultrasonic fiber-optic interferometric sensor using a laser and an acousto-optic modulator. Opt. Lett. 2019, 44, 2756. [Google Scholar] [CrossRef]
- Birch, K.P. Optical fringe subdivision with nanometric accuracy. Precis. Eng. 1990, 12, 195–198. [Google Scholar] [CrossRef]
- Hu, P.; Zhu, J.; Zhai, X.; Tan, J. DC-offset-free homodyne interferometer and its nonlinearity compensation. Opt. Express 2015, 23, 8399. [Google Scholar] [CrossRef] [PubMed]
- Peng, G. Processing of laser interferometric signals for small displacement measurements. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1992. Ch.3. pp. 62–66. [Google Scholar]
- Mitchell, D.R.G.; Van den Berg, J.A. Development of an ellipse fitting method with which to analyse selected area electron diffraction patterns. Ultramicroscopy 2016, 160, 140–145. [Google Scholar] [CrossRef] [PubMed]
h (V) | k (V) | a (V) | b (V) | (rad) | |
---|---|---|---|---|---|
Mean | 0.1041 | 0.1136 | 0.0726 | 0.0765 | 2.1685 |
STDEV () | 0.0005 (0.48%) | 0.0005 (0.41%) | 0.0003 (0.38%) | 0.0004 (0.49%) | 0.0048 (0.22%) |
B | C | D | E | F | |
---|---|---|---|---|---|
Mean | 1.0668 | 0.9023 | −0.3271 | −0.3139 | 0.0309 |
STDEV () | 0.0096 (0.90%) | 0.0093 (1.03%) | 0.0019 (0.58%) | 0.0028 (0.89%) | 0.0004 (1.20%) |
h (V) | k (V) | a (V) | b (V) | (rad) | |
---|---|---|---|---|---|
Mean | 0.1034 | 0.1128 | 0.0732 | 0.0771 | 2.1671 |
STDEV () | 0.0005 (0.47%) | 0.0006 (0.50%) | 0.0005 (0.62%) | 0.0005 (0.66%) | 0.0049 (0.23%) |
G | H | |||||
---|---|---|---|---|---|---|
Mean | 0.0073 | 1.0714 | 0.0940 | 0.0497 | 132.38 | 0.8489 |
STDEV () | 0.0001 (1.65%) | 0.0090 (0.84%) | 0.0005 (0.55%) | 0.0004 (0.90%) | 0.2622 (0.20%) | 0.0020 (0.23%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Lee, J.; Kim, Y.; Lee, B.H. Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer Based on 3 × 3 Fiber-Optic Coupler. Sensors 2020, 20, 2665. https://doi.org/10.3390/s20092665
Park S, Lee J, Kim Y, Lee BH. Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer Based on 3 × 3 Fiber-Optic Coupler. Sensors. 2020; 20(9):2665. https://doi.org/10.3390/s20092665
Chicago/Turabian StylePark, Soongho, Juhyung Lee, Younggue Kim, and Byeong Ha Lee. 2020. "Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer Based on 3 × 3 Fiber-Optic Coupler" Sensors 20, no. 9: 2665. https://doi.org/10.3390/s20092665
APA StylePark, S., Lee, J., Kim, Y., & Lee, B. H. (2020). Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer Based on 3 × 3 Fiber-Optic Coupler. Sensors, 20(9), 2665. https://doi.org/10.3390/s20092665