Multidimensional Minimum Euclidean Distance Approach Using Radar Reflectivities for Oil Slick Thickness Estimation
<p>Reflectivity (in dB) versus oil slick thickness (in mm) at different scanning frequencies. <math display="inline"><semantics> <msub> <mi>R</mi> <mi>o</mi> </msub> </semantics></math> (= <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <msub> <mi>d</mi> <mi>q</mi> </msub> <mo>,</mo> <msub> <mi>f</mi> <mi>k</mi> </msub> </mrow> </msub> </semantics></math>) and <math display="inline"><semantics> <msub> <mi>R</mi> <mi>w</mi> </msub> </semantics></math> are the reflectivity values for oil and water surfaces, respectively.</p> "> Figure 2
<p>2D Constellation for 8-mm thickness at frequencies <math display="inline"><semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics></math> = 10 GHz and <math display="inline"><semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics></math> = 12 GHz (<b>left</b>) and at frequencies <math display="inline"><semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics></math> = 6 GHz and <math display="inline"><semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics></math> = 8 GHz (<b>right</b>). Simulated reflectivity values at <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> = 8 mm are shown as “+” symbols on the constellations.</p> "> Figure 3
<p>Flowchart of the iterative procedure.</p> "> Figure 4
<p>Histograms of the thicknesses estimated by dual-frequency estimator at <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> GHz and <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> GHz with multiple scans <span class="html-italic">M</span>. The actual thickness <span class="html-italic">d</span> is 3 mm.</p> "> Figure 5
<p>(<b>Top</b>): Thickness estimated at each iteration using 50-Scan 2D Estimators. The estimations marked with red are not included in <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math>. The correct estimations marked with green form <math display="inline"><semantics> <msub> <mi mathvariant="italic">C</mi> <mrow> <msub> <mover accent="true"> <mi>d</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mi>d</mi> </mrow> </msub> </semantics></math> and are included in <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math>. The estimations marked with blue are included in <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math>, but they are incorrect. The actual thickness is 3 mm. (<b>Bottom</b>): Histograms of the estimated thicknesses excluded from <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math> (<b>left</b>) and included in <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math> (<b>right</b>).</p> "> Figure 6
<p>(<b>Top</b>): Thickness estimated at each iteration using 50-Scan 3D Estimators. The estimations marked with red are not included in <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math>. The correct estimations marked with green form <math display="inline"><semantics> <msub> <mi mathvariant="italic">C</mi> <mrow> <msub> <mover accent="true"> <mi>d</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mi>d</mi> </mrow> </msub> </semantics></math> and are included in <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math>. The estimations marked with blue are included in <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math>, but they are incorrect. The actual thickness is 3 mm. (<b>Bottom</b>): Histograms of the estimated thicknesses excluded from <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math> (<b>left</b>) and included in <math display="inline"><semantics> <mi mathvariant="italic">C</mi> </semantics></math> (<b>right</b>).</p> "> Figure 7
<p>Histograms of the thicknesses estimated by 1D, 2D, 3D and 4D-estimators with single scan. The actual thickness <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> is 3 mm.</p> "> Figure 8
<p>Histograms of the thicknesses estimated by 1D, 2D, 3D and 4D-estimators with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> scans. The actual thickness <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> is 3 mm.</p> "> Figure 9
<p>Histograms of the thicknesses estimated by 4D-estimators with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> scans for all possible thicknesses <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> in <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>g</mi> <mi>e</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 10
<p>Histograms of estimated thicknesses by 1D, 2D, 3D and 4D-estimators based on experimental reflectivity values with single scan (<math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). The actual thickness <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> is 3 mm.</p> "> Figure A1
<p>Histograms of the thicknesses estimated by 1D, 2D, 3D and 4D-estimators with single and multiple scans <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. The actual thickness <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> is 10 mm.</p> "> Figure A2
<p>(<b>Left</b>) Histograms of the thicknesses estimated by 1D, 2D, 3D and 4D-estimators with single scans <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>Right</b>) Corresponding maps of scanned area. The actual thickness <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> is 10 mm.</p> "> Figure A3
<p>Histograms of the thicknesses estimated by 1D, 2D, 3D and 4D-estimators with single and multiple scans <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. The actual thickness <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> is 5 mm.</p> "> Figure A4
<p>Histograms of the thicknesses estimated by 1D, 2D, 3D and 4D-estimators with single and multiple scans <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. The actual thickness <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> is 1 mm.</p> "> Figure A5
<p>Histograms of the thicknesses estimated by 1D, 2D, 3D and 4D-estimators with multiple scans <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, and 50. The actual thickness <math display="inline"><semantics> <msub> <mi>d</mi> <mi>q</mi> </msub> </semantics></math> is 1 mm.</p> ">
Abstract
:1. Introduction
- Oil-spill detection: this provides information about the location of oil slicks, and how large the spread area is. It is necessary information to allow oil spill mapping for both tactical and strategic countermeasures.
- Oil-thickness estimation: the thickness distribution of spilled oil is critical information for spill-containment because it allows an estimation of the total volume spilled, so that adequate tools can be used in clean-up operations.
- Oil-classification: knowledge about oil type is helpful to estimate the environmental damage and appropriate response.
- Using nadir-looking wide-band radar sensors by joint incorporation of C- and X-frequency bands, maximum-likelihood single (1D), dual- (2D), and multi-frequency (3D and 4D), statistical signal processing algorithms are developed to estimate the thicknesses of spilled oil slicks. The estimators use the Minimum-Euclidean-Distance classification problem on radar reflectivity values in pre-defined multidimensional constellation sets. The active radar sensor has not been used to estimate the oil slick thickness so far.
- An advanced practical procedure to use the proposed 2D and 3D estimators for accurate and reliable thickness estimations in oil-spill scenarios under noisy conditions is devised, and its accuracy is tested.
- The performance of the suggested algorithms is tested using simulated and in-lab experimental data. Results show accurate estimates of oil slick thicknesses from 1 to 10 mm.
- The proposed work is a proof of concept and helps take the oil spill-related research work one step forward towards the development of operational tools for oil-spill intervention.
2. Methods
2.1. System Model
2.1.1. Reflection Coefficient Calculation for Multi-Layer Structure
2.1.2. Relation between the Reflectivity and the Frequency
2.2. Minimum Euclidean Distance Algorithms
2.2.1. 1D Estimator
2.2.2. 2D Estimator
- Q1. When the oil thickness is unknown, how to select the pair of frequencies?
- Q2. What is the frequency pair that should be selected for the maximum likelihood 2D estimator to estimate a specific oil thickness?
2.2.3. K-D Estimator
2.2.4. Multiple-Scan K-D Estimator
2.3. Oil Thickness Estimation Iterative Procedure
2.3.1. Practical Iterative Procedure
2.3.2. Accuracy of the Estimation
3. Results and Discussion
3.1. Simulation Parameters
3.2. Frequency Pairs and Triads
3.3. Multiple-Scan 2D Estimators
3.4. Multiple-Scan 3D Estimators Using Iterative Procedure
3.5. Multiple-Scan K-D Estimators
3.6. Experimental Results
3.6.1. Experimental Reflectivity Values
3.6.2. Experimental Results Analysis
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
M | 2-D | 3-D | 4-D | |||
---|---|---|---|---|---|---|
d = 10 mm | 1 | 46 | 78 | 35 | 32 | 30 |
3 | 42 | 63 | 14 | 13 | 11 | |
d = 5 mm | 1 | 85 | 94 | 83 | 65 | 47 |
3 | 77 | 91 | 58 | 33 | 20 | |
d = 1 mm | 1 | 97 | 85 | 83 | 77 | 72 |
3 | 94 | 75 | 65 | 56 | 49 | |
10 | 90 | 58 | 36 | 32 | 26 | |
50 | 79 | 41 | 10 | 9 | 6 |
References
- Ipingbemi, O. Socio-economic implications and environmental effects of oil spillage in some communities in the Niger delta. J. Integr. Environ. Sci. 2009, 6, 7–23. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Ferguson, A.; Finucane, M.L.; Partyka, M.; Solo-Gabriele, H.M.; Walker, A.H.; Wowk, K.; Caffey, R.; Yoskowitz, D. Human health and socioeconomic effects of the Deepwater Horizon oil spill in the Gulf of Mexico. Oceanography 2021, 34, 174–191. [Google Scholar] [CrossRef]
- Alpers, W. Remote sensing of oil spills. In Maritime Disaster Management Symposium; Citeseer: State College, PA, USA, 2002; pp. 19–23. [Google Scholar]
- Barenboim, G.M.; Borisov, V.M.; Golosov, V.; Saveca, A.Y. New problems and opportunities of oil spill monitoring systems. Proc. Int. Assoc. Hydrol. Sci. 2015, 366, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Hook, S.; Batley, G.; Holloway, M.; Ross, A.; Irving, P. Oil Spill Monitoring Handbook; Csiro Publishing: Collingwood, Australia, 2016. [Google Scholar]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Jha, M.N.; Levy, J.; Gao, Y. Advances in remote sensing for oil spill disaster management: State-of-the-art sensors technology for oil spill surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingas, M. How to Measure Oil Thickness (or Not); AMOP, Environment Canada: Ottawa, ON, Canada, 2012; pp. 617–652. [Google Scholar]
- Svejkovsky, J.; Hess, M.; Muskat, J.; Nedwed, T.J.; McCall, J.; Garcia, O. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing. Mar. Pollut. Bull. 2016, 110, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Belore, R.; Trudel, K.; Morrison, J. Weathering, emulsification, and chemical dispersibility of Mississippi Canyon 252 crude oil: Field and laboratory studies. In Proceedings of the International Oil Spill Conference Proceedings (IOSC), Tampa, FL, USA, 26–29 March 2011; American Petroleum Institute: Washington, DC, USA, 2011; Volume 2011, p. abs247. [Google Scholar]
- Fingas, M. The Challenges of Remotely Measuring Oil Slick Thickness. Remote Sens. 2018, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Fingas, M.; Brown, C.E. A review of oil spill remote sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollinger, J.; Mennella, R. Oil spills: Measurements of their distributions and volumes by multifrequency microwave radiometry. Science 1973, 181, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Shih, W.C.; Andrews, A.B. Infrared contrast of crude-oil-covered water surfaces. Opt. Lett. 2008, 33, 3019–3021. [Google Scholar] [CrossRef] [PubMed]
- Yibo, L.; Xiang, Q.; Huifang, W. Experimental Study on Thickness Measuring Method of Oil-on-Water Using Laser-Ultrasonic Technique. Nanotechnol. Precis. Eng. 2017, 15, 159–167. [Google Scholar]
- Skou, N.; Toselli, F.; Wadsworth, A. Passive radiometry and other remote sensing data interpretation for oil slick thickness assessment, in an experimental case. ESA Remote Sensing Appl. in Environ. Studies (SEE N 84-12579 03-43). 1983, pp. 221–216. Available online: https://www.worldcat.org/ (accessed on 6 January 2022).
- Skou, N. Microwave radiometry for oil pollution monitoring, measurements, and systems. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 360–367. [Google Scholar] [CrossRef]
- Laaperi, A. Microprocessor controlled microwave radiometer system for measuring the thickness of an oil slick. In Proceedings of the Microwave Conference, 12th European, Helsinki, Finland, 13–17 September 1982; IEEE: Piscataway, NJ, USA, 1982; pp. 89–93. [Google Scholar]
- Molkov, A.; Kapustin, I.; Ermoshkin, A.; Ermakov, S. Remote sensing methods for measuring the thickness of oil/oil product films on the sea surface. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 2020, 17, 9–27. [Google Scholar] [CrossRef]
- Hammoud, B.; Ayad, H.; Fadlallah, M.; Jomaah, J.; Ndagijimana, F.; Faour, G. Oil Thickness Estimation Using Single-and Dual-Frequency Maximum-Likelihood Approach. In Proceedings of the 2018 International Conference on High Performance Computing & Simulation (HPCS), Orleans, France, 16–20 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 65–68. [Google Scholar]
- Georges, D.; Bou Maroun, C.; Hammoud, B. Advanced Iterative Multi-Frequency Algorithm Used by Radar Remote-Sensing Systems for Oil-Spill Thickness Estimation. In Proceedings of the 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 9–10 December 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Konur, O. Biodiesel and Petrodiesel Fuels: Science, Technology, Health, and the Environment. In Biodiesel Fuels; CRC Press: Boca Raton, FL, USA, 2021; pp. 3–36. [Google Scholar]
- Jorgensen, S.E. Encyclopedia of Environmental Management, Four Volume Set; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- De Carolis, G.; Adamo, M.; Pasquariello, G. On the estimation of thickness of marine oil slicks from sun-glittered, near-infrared MERIS and MODIS imagery: The Lebanon oil spill case study. IEEE Trans. Geosci. Remote Sens. 2013, 52, 559–573. [Google Scholar] [CrossRef]
- Skrunes, S.; Brekke, C.; Eltoft, T. Oil spill characterization with multi-polarization C-and X-band SAR. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 5117–5120. [Google Scholar]
- Hammoud, B.; Mazeh, F.; Jomaa, K.; Ayad, H.; Ndadijimana, F.; Faour, G.; Fadlallah, M.; Jomaah, J. Multi-Frequency Approach for Oil Spill Remote Sensing Detection. In Proceedings of the 2017 International Conference on High Performance Computing & Simulation (HPCS), Genoa, Italy, 17–21 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 295–299. [Google Scholar]
- Muntini, M.S.; Pramono, Y.H.; Minarto, E.; Kalsum, U.; Rachmanita, R.E. Modeling and simulation of microwave propagation on crude oil heating. In Proceedings of the 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), Surabaya, Indonesia, 25–26 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 46–50. [Google Scholar]
- Ulaby, F.T.; Long, D.G.; Blackwell, W.J.; Elachi, C.; Fung, A.K.; Ruf, C.; Sarabandi, K.; Zebker, H.A.; Van Zyl, J. Microwave Radar and Radiometric Remote Sensing; University of Michigan Press Ann Arbor: Ann Arbor, MI, USA, 2014; Volume 4. [Google Scholar]
- Daling, P.S.; Leirvik, F.; Almås, I.K.; Brandvik, P.J.; Hansen, B.H.; Lewis, A.; Reed, M. Surface weathering and dispersibility of MC252 crude oil. Mar. Pollut. Bull. 2014, 87, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, B.; Jomaa, K.; Ndagijimana, F.; Faour, G.; Ayad, H.; Jomaah, J. Experimental Validation of Algorithms Used by Radar Remote-Sensing Systems for Oil-Spill Detection and Thickness Estimation. In Proceedings of the 2019 16th European Radar Conference (EuRAD), Paris, France, 2–4 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 205–208. [Google Scholar]
Thickness | Frequency Pair (2D) | Frequency Triad (3D) |
---|---|---|
1 mm | (6 GHz, 12 GHz) | (5 GHz, 12 GHz, 12 GHz) |
2 mm | (6 GHz, 12 GHz) | (6 GHz, 12 GHz, 12 GHz) |
3 mm | (4 GHz, 12 GHz) | (9 GHz, 9 GHz, 12 GHz) |
4 mm | (10 GHz, 11 GHz) | (7 GHz, 9 GHz, 12 GHz) |
5 mm | (9 GHz, 9 GHz) | (9 GHz, 12 GHz, 12 GHz) |
6 mm | (8 GHz, 12 GHz) | (8 GHz, 10 GHz, 10 GHz) |
7 mm | (7 GHz, 10 GHz) | (7 GHz, 9 GHz, 9 GHz) |
8 mm | (6 GHz, 8 GHz) | (7 GHz, 8 GHz, 12 GHz) |
9 mm | (4 GHz, 8 GHz) | (4 GHz, 12 GHz, 12 GHz) |
10 mm | (4 GHz, 12 GHz) | (4 GHz, 11 GHz, 12 GHz) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammoud, B.; Daou, G.; Wehn, N. Multidimensional Minimum Euclidean Distance Approach Using Radar Reflectivities for Oil Slick Thickness Estimation. Sensors 2022, 22, 1431. https://doi.org/10.3390/s22041431
Hammoud B, Daou G, Wehn N. Multidimensional Minimum Euclidean Distance Approach Using Radar Reflectivities for Oil Slick Thickness Estimation. Sensors. 2022; 22(4):1431. https://doi.org/10.3390/s22041431
Chicago/Turabian StyleHammoud, Bilal, Georges Daou, and Norbert Wehn. 2022. "Multidimensional Minimum Euclidean Distance Approach Using Radar Reflectivities for Oil Slick Thickness Estimation" Sensors 22, no. 4: 1431. https://doi.org/10.3390/s22041431
APA StyleHammoud, B., Daou, G., & Wehn, N. (2022). Multidimensional Minimum Euclidean Distance Approach Using Radar Reflectivities for Oil Slick Thickness Estimation. Sensors, 22(4), 1431. https://doi.org/10.3390/s22041431