Phase Correlation Single Channel Continuous Wave Doppler Radar Recognition of Multiple Sources
<p>The figure shows two simulated receiving signals, 0.2 Hz baseband-1 and 0.3 Hz baseband-2, with phase sweeping between <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>360</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, incremented at <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> per step.</p> "> Figure 2
<p>The figure shows two simulated baseband received signals, 0.2 Hz baseband-1 and 0.3 Hz baseband-2. Baseband-1 is at an optimum point, and baseband-2 is at a null point, when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>a</b>). Baseband-1 is at a null point, and baseband-2 is at an optimal point, when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>225</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>b</b>).</p> "> Figure 3
<p>The figure shows a block diagram of phase-sweeping single-channel single-antenna radar system operating at 2.4 GHz. The analog phase shifter (APS) is installed in the radar’s received path and is controlled via a programmable power supply.</p> "> Figure 4
<p>The phase shifter’s output as a linear function of applied voltage.</p> "> Figure 5
<p>The figure shows the experiment setup with the phase-sweeping radar and one robotic mover. The distance between the radar and the mover is <math display="inline"><semantics> <msub> <mi>d</mi> <mn>0</mn> </msub> </semantics></math> = 1.5 m. The mover oscillates at 0.3 Hz frequency and 10 mm amplitude.</p> "> Figure 6
<p>The figure shows the demodulated signal, with phase sweeping between <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>178</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>82</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>. The robotic mover 0.3 Hz is at a null point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> and at an optimum point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>44</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 7
<p>The figure shows two sets of demodulated signal, with <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>44</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>c</b>,<b>d</b>). The robotic mover 0.3 Hz is at a null point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, as the first harmonic 0.6 Hz surpassing the fundamental 0.3 Hz (<b>b</b>), and at an optimum point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>44</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, as the fundamental surpassing the first harmonic (<b>d</b>).</p> "> Figure 8
<p>Photograph of the two robotic movers placed facing radar antenna (<b>a</b>). The figure shows the experiment setup with the phase-sweeping radar and two robotic movers (<b>b</b>). The nominal distance between the radar and the movers is <math display="inline"><semantics> <msub> <mi>d</mi> <mn>0</mn> </msub> </semantics></math> = 1.5 m. The distance between the movers is 0.8 m. Mover-1 oscillates at 0.3 Hz frequency and 10 mm amplitude. Mover-2 oscillates at 0.2 Hz frequency and 10 mm amplitude.</p> "> Figure 9
<p>The figure shows the demodulated signals, with phase sweeping between <math display="inline"><semantics> <mrow> <mo>−</mo> <msup> <mn>102</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> to <math display="inline"><semantics> <msup> <mn>49</mn> <mo>∘</mo> </msup> </semantics></math>. Mover-1 at 0.3 Hz is at an optimum point, and mover-2 at 0.2 Hz is at a null point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>79</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>. Mover-1 is at a null point, and mover-2 is at an optimum point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>11</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 10
<p>The figure shows two sets of demodulated signals, with <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>79</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>11</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>c</b>,<b>d</b>). Robotic mover-1 0.3 Hz is at an optimum point, and mover-2 0.2 Hz is at a null point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>79</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>b</b>). Mover-1 is at a null point, and mover-2 is at an optimum point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>11</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>d</b>).</p> "> Figure 11
<p>Photograph of the human subject and robotic movers placed facing radar antenna (<b>a</b>). The figure shows the experiment setup with the phase-sweeping radar, one robotic mover, and one human subject (<b>b</b>). The nominal distance between the radar and the targets is <math display="inline"><semantics> <msub> <mi>d</mi> <mn>0</mn> </msub> </semantics></math> = 1.5 m. The distance between the targets is 0.8 m. The mover oscillates at 0.3 Hz frequency and 10 mm amplitude. The human subject breathes at 0.2 Hz.</p> "> Figure 12
<p>The figure shows the demodulated signals reflected from the two targets, with phase sweeping between <math display="inline"><semantics> <mrow> <mo>−</mo> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> to <math display="inline"><semantics> <msup> <mn>40</mn> <mo>∘</mo> </msup> </semantics></math>. The mover 0.3 Hz is at a null point, and the human target 0.2 Hz is near an optimum point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>. The mover is near an optimum point, and the human target 0.2 Hz is at a null point when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>10</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 13
<p>The figure shows two sets of demodulated signals, with <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>c</b>,<b>d</b>). The mover 0.3 Hz is at at a null point, and the human subject 0.2 Hz is near an optimum point, when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>b</b>). The mover is near an optimal point, and the human subject is at a null point, when <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>p</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>10</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Theoretical Analysis
3. Simulation
4. Implementation and Experiments
4.1. Robotic Mover Detection
4.2. Two Robotic Targets Detection
4.3. One Human Target and One Robotic Target Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, C. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review. Sensors 2016, 16, 1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.M.; Huang, Y.; Zhang, J.; Norman, A. Microwave Life-Detection Systems for Searching Human Subjects under Earthquake Rubble or Behind Barrier. IEEE Trans. Biomed. Eng. 2000, 47, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lubecke, V.M.; Borić-Lubecke, O.; Lin, J. Sensing of Life Activities at the Human-Microwave Frontier. IEEE J. Microwaves 2021, 1, 66–78. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Borić-Lubecke, O.; Zheng, Y.; Lubecke, V.M. Radar-Based Non-Contact Continuous Identity Authentication. Remote. Sens. 2020, 12, 2279. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Millimeter-Wave Radar Cane: A Blind People Aid with Moving Human Recognition Capabilities. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 1–8. [Google Scholar] [CrossRef]
- Singh, A.; Rehman, S.U.; Yongchareon, S.; Chong, P.H.J. Multi-Resident Non-Contact Vital Sign Monitoring using Radar: A Review. IEEE Sensors J. 2021, 21, 4061–4084. [Google Scholar] [CrossRef]
- Pour Ebrahim, M.; Sarvi, M.; Yuce, M.R. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions. Sensors 2017, 17, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borić-Lubecke, O.; Lubecke, V.M.; Host-Madsen, A.; Samardzija, D.; Cheung, K. Doppler Radar Sensing of Multiple Subjects in Single and Multiple Antenna Systems. In Proceedings of the 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services (TELSIKS 2005), Nis, Serbia, 28–30 September 2005; Volume 1, pp. 7–11. [Google Scholar]
- Lee, Y.S.; Pathirana, P.N.; Evans, R.J.; Steinfort, C.L. Separation of Doppler Radar Based Respiratory Signatures. Med. Biol. Eng. Comput. 2015, 54, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Rivera, N.V.; Swaroop, V.; Chris, A.; Buehrer, R.M. Multi-Target Estimation of Heart and Respiration Rates using Ultra-Wideband Sensors. In Proceedings of the 14th IEEE European Signal Processing Conference, Florence, Italy, 4–8 September 2006; pp. 1–6. [Google Scholar]
- Adib, F.; Kabelac, Z.; Mao, H.; Katabi, D.; Miller, R.C. Real-Time Breath Monitoring using Wireless Signals. In Proceedings of the 20th ACM Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 261–262. [Google Scholar]
- Cardillo, E.; Caddemi, A. Radar Range-Breathing Separation for the Automatic Detection of Humans in Cluttered Environments. IEEE Sensors J. 2021, 21, 14043–14050. [Google Scholar] [CrossRef]
- Jia, Y.; Guo, Y.; Yan, C.; Sheng, H.; Cui, G.; Zhong, X. Detection and Localization for Multiple Stationary Human Targets Based on Cross-Correlation of Dual-Station SFCW Radars. Remote Sens. 2019, 11, 1428. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Chen, B.; Yang, M. Constant-Modulus-Waveform Design for Multiple-Target Detection in Co-Located MIMO Radar. Sensors 2019, 19, 4040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.-K.; Yamada, S.; Borić-Lubecke, O.; Lubecke, V.M. Single-Channel Receiver Limitations in Doppler Radar Measurements of Periodic Motion. In Proceedings of the 2006 IEEE Radio and Wireless Symposium, San Diego, CA, USA, 17–19 October 2006; pp. 99–102. [Google Scholar]
- Xiao, Y.; Lin, J.; Borić-Lubecke, O.; Lubecke, V.M. Frequency-Tuning Technique for Remote Detection of Heartbeat and Respiration using Low-Power Double-Side Band Transmission in the Ka-band. IEEE Trans. Microw. Theory Tech. 2006, 54, 2023–2032. [Google Scholar] [CrossRef]
- Pan, W.; Wang, J.; Huangfu, J.; Li, C.; Ran, L. Null Point Elimination using RF Phase Shifter in Continuous-Wave Doppler Radar System. Electron. Lett. 2011, 47, 1196. [Google Scholar] [CrossRef]
- Girbau, D.; Lázaro, A.; Ramos, Á.; Villarino, R. Remote Sensing of Vital Signs using a Doppler Radar and Diversity to Overcome Null Detection. IEEE Sensors J. 2011, 12, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, A.; Ishmael, K.; Yavari, E.; Borić-Lubecke, O. Unambiguous Determination of Oscillation Frequency for Multiple Objects using Quadrature Doppler Radar. In Proceedings of the 2018 IEEE Asia-Pacific Microwave Conference, Kyoto, Japan, 6–9 November 2018; pp. 1396–1398. [Google Scholar]
- Ishmael, K.; Whitworth, A.; Yavari, E.; Borić-Lubecke, O. Single Antenna Continuous Wave Doppler Radar Detection for Multiple Moving Targets. In Proceedings of the 2019 IEEE Radio and Wireless Symposium, Orlando, FL, USA, 20–23 January 2019; pp. 1–4. [Google Scholar]
- Shafiq, G.; Veluvolu, K.C. Surface Chest Motion Decomposition for Cardiovascular Monitoring. Sci. Rep. 2014, 4, 5093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishmael, K.; Zheng, Y.; Borić-Lubecke, O. Phase Correlation Single Channel Continuous Wave Doppler Radar Recognition of Multiple Sources. Sensors 2022, 22, 970. https://doi.org/10.3390/s22030970
Ishmael K, Zheng Y, Borić-Lubecke O. Phase Correlation Single Channel Continuous Wave Doppler Radar Recognition of Multiple Sources. Sensors. 2022; 22(3):970. https://doi.org/10.3390/s22030970
Chicago/Turabian StyleIshmael, Khaldoon, Yao Zheng, and Olga Borić-Lubecke. 2022. "Phase Correlation Single Channel Continuous Wave Doppler Radar Recognition of Multiple Sources" Sensors 22, no. 3: 970. https://doi.org/10.3390/s22030970
APA StyleIshmael, K., Zheng, Y., & Borić-Lubecke, O. (2022). Phase Correlation Single Channel Continuous Wave Doppler Radar Recognition of Multiple Sources. Sensors, 22(3), 970. https://doi.org/10.3390/s22030970