System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing
<p>Magnetic stray flux components: (<b>a</b>) radial stray flux; (<b>b</b>) axial stray flux.</p> "> Figure 2
<p>Triaxial stray flux architecture: (<b>a</b>) primary sensors; (<b>b</b>) axial stray flux installation.</p> "> Figure 3
<p>Machining process and cutting parameters.</p> "> Figure 4
<p>Tool-wear area quantification.</p> "> Figure 5
<p>Rectangular window considered to compute <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mrow> <mi>D</mi> <mi>W</mi> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math> by analyzing the wavelet signal, <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>n</mi> </msub> </mrow> </semantics></math>: (<b>a</b>) stray flux captured by the sensor. (<b>b</b>) wavelet signal containing the majority of the fault frequency component.</p> "> Figure 6
<p>Block diagram of the proposed methodology for tool-wear condition monitoring.</p> "> Figure 7
<p>Experimental setup: (<b>a</b>) machining process and (<b>b</b>) data acquisition system module.</p> "> Figure 8
<p>Inserts without wear and with medium and excessive tool wear for experimentation: (<b>a</b>) cutting speed, and (<b>b</b>) feed rate variation.</p> "> Figure 9
<p>Experimental design for matrix of features computing and tool-wear condition classification.</p> "> Figure 10
<p>Acquired signals from the four sensors: test taken from variation of cutting speed; (<b>a</b>) original signals and (<b>b</b>) filtered signals.</p> "> Figure 11
<p>Results from cutting speed variations for the fusion of AC current and stray flux sensors; (<b>a</b>) confusion matrix and (<b>b</b>) ANN classification.</p> "> Figure 12
<p>Results from cutting speed variations for the AC current sensor; (<b>a</b>) confusion matrix and (<b>b</b>) ANN classification.</p> "> Figure 13
<p>Results from cutting speed variations for the stray flux sensors; (<b>a</b>) confusion matrix and (<b>b</b>) ANN classification.</p> "> Figure 14
<p>Acquired signals from the four sensors: test taken from variation of feed rate; (<b>a</b>) original signals and (<b>b</b>) filtered signals.</p> "> Figure 15
<p>Results from feed rate variations for the fusion of AC current and stray flux sensors; (<b>a</b>) confusion matrix and (<b>b</b>) ANN classification.</p> "> Figure 16
<p>Results from feed rate variations for the AC current sensor; (<b>a</b>) confusion matrix and (<b>b</b>) ANN classification.</p> "> Figure 17
<p>Results from feed rate variations for the stray flux sensors; (<b>a</b>) confusion matrix and (<b>b</b>) ANN classification.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stray Flux Signal Analysis
2.2. AC Current Demand of the Spindle Motor in the CNC Machine
2.3. Cutting Parameters in CNC Machines
2.4. Tool-Wear Calculation
2.5. Statistical Time-Domain Features
2.6. Fractal Dimension Analysis
2.6.1. Katz’s Fractal Dimension (KFD) Computation Procedure
2.6.2. Higuchi’s Fractal Dimension (HFD) Computation Procedure
2.7. Dicrete Wavelet Transform Energy ()
2.8. Wavelet Entropy ()
3. Proposed Methodology
4. Experimentation
4.1. Experimental Setup
4.2. Study Cases
4.2.1. Study Case: Variation in Cutting Speed
4.2.2. Study Case: Variations in Feed Rate
4.3. Experimental Design for Matrix of Features Computing and Tool-Wear Condition Classification
5. Results
5.1. Results of Cutting Tool Wear Detection under Variations in Cutting Speed
5.2. Results of Cutting Tool Wear Detection under Variations in Feed Rate
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haraguchi, N.; Cheng, C.F.C.; Smeets, E. The Importance of Manufacturing in Economic Development: Has This Changed? World Dev. 2017, 93, 293–315. [Google Scholar] [CrossRef]
- Luan, X.; Zhang, S.; Li, J.; Mendis, G.; Zhao, F.; Sutherland, J. Trade-off analysis of tool wear, machining quality and energy efficiency of alloy cast iron milling process. Procedia Manuf. 2018, 26, 383–393. [Google Scholar] [CrossRef]
- Weckenmann, A.; Nalbantic, K. Precision Measurement of Cutting Tools with two Matched Optical 3D-Sensors. CIRP Ann. 2003, 52, 443–446. [Google Scholar] [CrossRef]
- Sakharov, G.N.; Il’inykh, V.A.; Konyukhov, V.Y. Improvement of fastening elements in an assembled cutting tool. Sov. Eng. Res. 1990, 10, 102–103. [Google Scholar]
- Dutta, S.; Pal, S.; Mukhopadhyay, S.; Sen, R. Application of digital image processing in tool condition monitoring: A review. CIRP J. Manuf. Sci. Technol. 2013, 6, 212–232. [Google Scholar] [CrossRef]
- Kao, Y.T.; Chang, S.C.; Dauzere-Peres, S.; Blue, J. Opportunity for improving fab effectiveness by predictive overall equipment effectiveness (POEE). In Proceedings of the e-Manufacturing and Design Collaboration Symposium 2016 (eMDC 2016), Hsinchu, Taiwan, 9 September 2016; pp. 1–4. [Google Scholar]
- Guo, J.C.; Li, A.H. Advances in Monitoring Technology of Tool Wear Condition. Tool Eng. 2019, 53, 3–13. [Google Scholar]
- Dimla, E. Sensor signals for tool-wear monitoring in metal cutting operations—A review of methods. Int. J. Mach. Tools Manuf. 2000, 40, 1073–1098. [Google Scholar] [CrossRef]
- Suresh, R.; Basavarajappa, S. Effect of Process Parameters on Tool Wear and Surface Roughness during Turning of Hardened Steel with Coated Ceramic Tool. Procedia Mater. Sci. 2014, 5, 1450–1459. [Google Scholar] [CrossRef] [Green Version]
- Kuntoğlu, M.; Sağlam, H. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement 2019, 140, 427–436. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Sengupta, D.; Mukhopadhyay, S. Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques. Mech. Syst. Signal Process. 2007, 21, 2665–2683. [Google Scholar] [CrossRef]
- Miao, H.; Zhao, Z.; Sun, C.; Li, B.; Yan, R. A U-Net-Based Approach for Tool Wear Area Detection and Identification. IEEE Trans. Instrum. Meas. 2021, 70, 5004110. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, W. Review of tool condition monitoring methods in milling processes. Int. J. Adv. Manuf. Technol. 2018, 96, 2509–2523. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Aslan, A.; Pimenov, D.Y.; Usca, Ü.A.; Salur, E.; Gupta, M.K.; Mikolajczyk, T.; Giasin, K.; Kapłonek, W.; Sharma, S. A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends. Sensors 2021, 21, 108. [Google Scholar] [CrossRef]
- Drouillet, C.; Karandikar, J.; Nath, C.; Journeaux, A.-C.; El Mansori, M.; Kurfess, T. Tool life predictions in milling using spindle power with the neural network technique. J. Manuf. Process. 2016, 22, 161–168. [Google Scholar] [CrossRef]
- Cuka, B.; Kim, D.-W. Fuzzy logic based tool condition monitoring for end-milling. Robot. Comput. Manuf. 2017, 47, 22–36. [Google Scholar] [CrossRef]
- Javed, K.; Gouriveau, R.; Li, X.; Zerhouni, N. Tool wear monitoring and prognostics challenges: A comparison of connectionist methods toward an adaptive ensemble model. J. Intell. Manuf. 2018, 29, 1873–1890. [Google Scholar] [CrossRef]
- Prickett, P.; Johns, C. An overview of approaches to end milling tool monitoring. Int. J. Mach. Tools Manuf. 1999, 39, 105–122. [Google Scholar] [CrossRef]
- Koike, R.; Ohnishi, K.; Aoyama, T. A sensorless approach for tool fracture detection in milling by integrating multi-axial servo information. CIRP Ann. 2016, 65, 385–388. [Google Scholar] [CrossRef]
- Pechenin, V.A.; Khaimovich, A.I.; Kondratiev, A.I.; Bolotov, M.A. Method of Controlling Cutting Tool Wear Based on Signal Analysis of Acoustic Emission for Milling. Procedia Eng. 2017, 176, 246–252. [Google Scholar] [CrossRef]
- Yen, C.-L.; Lu, M.-C.; Chen, J.-L. Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting. Mech. Syst. Signal Process. 2013, 34, 353–366. [Google Scholar] [CrossRef]
- Zhu, K.; Vogel-Heuser, B. Sparse representation and its applications in micro-milling condition monitoring: Noise separation and tool condition monitoring. Int. J. Adv. Manuf. Technol. 2014, 70, 185–199. [Google Scholar] [CrossRef]
- Ramirez-Nunez, J.A.; Trejo-Hernandez, M.; Romero-Troncoso, R.J.; Herrera-Ruiz, G.; Osornio-Rios, R.A. Smart-sensor for tool-breakage detection in milling process under dry and wet conditions based on infrared thermography. Int. J. Adv. Manuf. Technol. 2018, 97, 1753–1765. [Google Scholar] [CrossRef]
- Ammouri, A.H.; Hamade, R.F. Current rise criterion: A process-independent method for tool-condition monitoring and prognostics. Int. J. Adv. Manuf. Technol. 2014, 72, 509–519. [Google Scholar] [CrossRef]
- Zamudio-Ramirez, I.; Antonino-Daviu, J.A.; Trejo-Hernandez, M.; Osornio-Rios, R.A.A. Cutting Tool Wear Monitoring in CNC Machines Based in Spindle-Motor Stray Flux Signals. IEEE Trans. Ind. Inform. 2020, 1. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Lei, J.; Li, X.; Tian, F. Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. J. Intell. Manuf. 2020, 31, 953–966. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, W. Tool Wear Condition Monitoring in Milling Process Based on Current Sensors. IEEE Access 2020, 8, 95491–95502. [Google Scholar] [CrossRef]
- Hassan, M.; Sadek, A.; Attia, M.H. A Generalized Multisensor Real-Time Tool Condition–Monitoring Approach Using Deep Recurrent Neural Network. Smart Sustain. Manuf. Syst. 2019, 3, 41–52. [Google Scholar] [CrossRef]
- Zamudio-Ramirez, I.; Osornio-Rios, R.A.A.; Antonino-Daviu, J.A.; Razik, H.; Romero-Troncoso, R.D.J. Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review. IEEE Trans. Ind. Inform. 2021, 1. [Google Scholar] [CrossRef]
- Romary, R.; Pusca, R.; Lecointe, J.P.; Brudny, J.F. Electrical machines fault diagnosis by stray flux analysis. In Proceedings of the 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Paris, France, 11–12 March 2013; pp. 247–256. [Google Scholar]
- Romary, R.; Roger, D.; Brudny, J.-F. Analytical computation of an AC machine external magnetic field. Eur. Phys. J. Appl. Phys. 2009, 47, 31102. [Google Scholar] [CrossRef]
- Kalpakjian, S.; Schmid, S.R. Manufacturing Engineering and Technology; Pearson Prentice Hall: Hoboken, NJ, USA, 2014. [Google Scholar]
- Caesarendra, W.; Tjahjowidodo, T. A Review of Feature Extraction Methods in Vibration-Based Condition Monitoring and Its Application for Degradation Trend Estimation of Low-Speed Slew Bearing. Machines 2017, 5, 21. [Google Scholar] [CrossRef]
- Saucedo-Dorantes, J.J.; Delgado-Prieto, M.; Osornio-Rios, R.A.; Romero-Troncoso, R.D.J. Diagnosis methodology for identifying gearbox wear based on statistical time feature reduction. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 232, 2711–2722. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Rosales, J.; Granados-Lieberman, D.; Garcia-Perez, A.; Camarena-Martinez, D.; Amezquita-Sanchez, J.; Valtierra-Rodriguez, M. Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and Support Vector Machines on FPGA. Sensors 2021, 21, 3598. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Perez-Ramirez, C.A.; Camarena-Martinez, D.; Garcia-Perez, A.; Romero-Troncoso, R.J. Fractal dimension and fuzzy logic systems for broken rotor bar detection in induction motors at start-up and steady-state regimes. Meas. Sci. Technol. 2017, 28, 075001. [Google Scholar] [CrossRef]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Riera-Guasp, M.; Antonino-Daviu, J.A.; Pineda-Sanchez, M.; Puche-Panadero, R.; Perez-Cruz, J. A General Approach for the Transient Detection of Slip-Dependent Fault Components Based on the Discrete Wavelet Transform. IEEE Trans. Ind. Electron. 2008, 55, 4167–4180. [Google Scholar] [CrossRef]
- Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Başar, E. Wavelet entropy: A new tool for analysis of short duration brain electrical signals. J. Neurosci. Methods 2001, 105, 65–75. [Google Scholar] [CrossRef]
- Quiroga, R.Q.; Rosso, O.A.; Başar, E.; Schürmann, M. Wavelet entropy in event-related potentials: A new method shows ordering of EEG oscillations. Biol. Cybern. 2001, 84, 291–299. [Google Scholar] [CrossRef]
- Rizal, A.; Hidayat, R.; Nugroho, H.A. Multilevel wavelet packet entropy: A new strategy for lung sound feature extraction based on wavelet entropy. In Proceedings of the 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka, Malaysia, 27–29 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
Statistical Time-Domain Feature | Mathematical Equation | |
---|---|---|
Mean | (4) | |
Maximum value | (5) | |
Root mean square | (6) | |
Square root mean | (7) | |
Standard deviation | (8) | |
Variance | (9) | |
RMS Shape factor | (10) | |
SRM Shape factor | (11) | |
Crest factor | (12) | |
Latitude factor | (13) | |
Impulse factor | (14) | |
Skewness | (15) | |
Kurtosis | (16) | |
Fifth moment | (17) | |
Sixth moment | (18) |
No | Insert Tool | |||||
1 | I1s, I2s, I3s | 1.25 | 0.16 | 60 | 779.53 | 124.72 |
2 | 1.25 | 0.16 | 70 | 909.45 | 145.51 | |
3 | 1.25 | 0.16 | 80 | 1039.37 | 166.30 | |
4 | 1.25 | 0.16 | 90 | 1169.29 | 187.08 | |
5 | 1.25 | 0.16 | 100 | 1299.22 | 207.87 |
No | Insert Tool | |||||
1 | I1f, I2f, I3f | 1.25 | 0.08 | 100 | 1299.22 | 103.938 |
2 | 1.25 | 0.12 | 100 | 1299.22 | 155.907 | |
3 | 1.25 | 0.16 | 100 | 1299.22 | 207.875 | |
4 | 1.25 | 0.20 | 100 | 1299.22 | 259.844 | |
5 | 1.25 | 0.24 | 100 | 1299.22 | 311.813 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaen-Cuellar, A.Y.; Osornio-Ríos, R.A.; Trejo-Hernández, M.; Zamudio-Ramírez, I.; Díaz-Saldaña, G.; Pacheco-Guerrero, J.P.; Antonino-Daviu, J.A. System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing. Sensors 2021, 21, 8431. https://doi.org/10.3390/s21248431
Jaen-Cuellar AY, Osornio-Ríos RA, Trejo-Hernández M, Zamudio-Ramírez I, Díaz-Saldaña G, Pacheco-Guerrero JP, Antonino-Daviu JA. System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing. Sensors. 2021; 21(24):8431. https://doi.org/10.3390/s21248431
Chicago/Turabian StyleJaen-Cuellar, Arturo Yosimar, Roque Alfredo Osornio-Ríos, Miguel Trejo-Hernández, Israel Zamudio-Ramírez, Geovanni Díaz-Saldaña, José Pablo Pacheco-Guerrero, and Jose Alfonso Antonino-Daviu. 2021. "System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing" Sensors 21, no. 24: 8431. https://doi.org/10.3390/s21248431
APA StyleJaen-Cuellar, A. Y., Osornio-Ríos, R. A., Trejo-Hernández, M., Zamudio-Ramírez, I., Díaz-Saldaña, G., Pacheco-Guerrero, J. P., & Antonino-Daviu, J. A. (2021). System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing. Sensors, 21(24), 8431. https://doi.org/10.3390/s21248431