Fast FMCW Terahertz Imaging for In-Process Defect Detection in Press Sleeves for the Paper Industry and Image Evaluation with a Machine Learning Approach
"> Figure 1
<p>Schematic of the FMCW terahertz transceivers. Linear voltage ramps from a data acquisition unit’s (DAQ) analog output drive the voltage controlled oscillators (VCOs) at frequencies from 12 to 18 GHz for the 300 GHz and 9 to 15 GHz for the 500 GHz system, respectively. The frequencies are then multiplied in waveguide component-based multiplier chains to the desired target frequencies of 230 to 320 GHz and 350 to 510 GHz. We use waveguide horn antennas in combination with quasi-optical lens systems to focus the outgoing radiation (Tx) onto the press sleeves. The reflected radiation (Rx) is collected by the same quasi-optics and guided to Schottky-diode receivers and mixed with the VCOs reference output ramps. The generated difference frequency signals are sampled by 10 MHz ADC input channels of the DAQ.</p> "> Figure 2
<p>Measurement scheme of the terahertz imaging setup for the investigation of paper press sleeves. (<b>a</b>) Side view showing the terahertz FMCW transceiver with 50 mm focusing optics mounted on a linear axis and placed in front of the rotating sleeves at the height of the rotational axis. (<b>b</b>) Front view. During measurement, the terahertz transceiver moves along the linear axis and terahertz volumetric data is recorded along the indicated spiral imaging path. An attached metal strip serves as rotation reference with a peak in the terahertz reflection signal on every roundtrip.</p> "> Figure 3
<p>Laboratory-scale realization of the rotational imaging setup. Cut-out pieces of press sleeves are attached to a metal cylinder on a rotational stage. The two terahertz transceivers are mounted on a linear translational axis pointing towards the rotational axis of the metal cylinder. By linear translation along the cylinders axis, terahertz data is recorded on a spiral imaging path.</p> "> Figure 4
<p>(<b>a</b>) Photograph of the backside of a piece of press sleeve with several hole defects of different diameters. The magnified section of the image shows a number of small pinhole defects with <0.5 mm diameter, indicated by the arrows. (<b>b</b>) Terahertz images of the investigated sample showing the hidden backside of the sleeve facing the metal cylinder when mounted as in <a href="#sensors-21-06569-f003" class="html-fig">Figure 3</a>. The images were recorded at a data acquisition rate of 20 kHz with the two terahertz transceivers at 300 GHz and 500 GHz center frequency. Defects down to 0.8 mm (circles) as well as an unexpected larger defect inside the sleeve (rectangle) can be detected with both systems. The imaging system working around 500 GHz can even reveal a large number of the pinhole defects, the ones marked with yellow arrows corresponding to the pinholes in (<b>a</b>).</p> "> Figure 5
<p>The terahertz imaging system setup in a realistic production environment of press sleeves for the paper industry. The sleeves are investigated within the usual production process to detect possible invisible defects at an early stage of the production line. An area of around 1 square meter of sleeve surface was recorded in this study, limited only by the total travel range of the linear translational axis. Due to the high rotational velocities of up to 150 rpm and large sleeve diameters up to 1.3 m, the terahertz FMCW transceivers are operated at very high data acquisition rates of 20 kHz to yield desired image resolutions of around 0.5 mm.</p> "> Figure 6
<p>Terahertz image (C-scan) of a larger segment (1100 × 250 <math display="inline"><semantics> <msup> <mi>mm</mi> <mn>2</mn> </msup> </semantics></math>) of a press sleeve measured at the production site as in <a href="#sensors-21-06569-f005" class="html-fig">Figure 5</a> with the 500 GHz transceiver at 20 kHz measurement rate. The image shows a depth layer close to the sleeves backside in contact with the metal barrel (see B-scan in lower left corner) at 8 mm below the surface. The magnified images indicate that the size of most of the defects is comparable to the grid generated by the sleeve’s fiber mesh inlay roughly amounting to approximately 1 mm in diameter or smaller.</p> "> Figure 7
<p>Terahertz image of a press sleeve measured under real operation conditions (150 rpm rotational speed, sleeve diameter 1.3 m) with the 500 GHz FMCW transceiver. The production conditions were deliberately altered during manufacturing to produce this high density of defects in the investigated area. The image shows again only a segment of 1800 × 150 <math display="inline"><semantics> <msup> <mi>mm</mi> <mn>2</mn> </msup> </semantics></math> out of the total scan area of 1.2 <math display="inline"><semantics> <msup> <mi>mm</mi> <mn>2</mn> </msup> </semantics></math> for better visibility. Clearly, defects of various sizes are revealed to dimensions down to less than the grid spacing of approximately 1 mm of the visible fiber mesh pattern (see blue circles in the magnified inset). The black area on the left of the image represents the shadow of the attached metal strip on the sleeve’s surface for the alignment of the continuously recorded terahertz data.</p> "> Figure 8
<p>(<b>a</b>) Some examples for image segments manually labeled as positive (class: defect) or negative (class: no defect)). The plots below the images show the minimum intensity values per column, corresponding to significant values in feature X1 (standard deviation of minimum value), where true defects are present. (<b>b</b>) Two-dimensional feature space of the data set. Green (red) crosses represent samples manually labeled as positive (negative). Contour lines of the multivariate Gaussian probability distribution after training plotted at integer powers of 10 (outwards from +3 to −3) times the decision boundary <math display="inline"><semantics> <mi>ε</mi> </semantics></math> plotted as yellow line. The black circles mark the samples classified as outliers (defects) by the anomaly detection algorithm. The inset shows the good F1 score of 0.913 reached at around 3000 iterations of optimization.</p> "> Figure 9
<p>Illustration of the outcome of the automated defect recognition on the whole measured press sleeve area with the previously trained ML anomaly detection model. The red rectangles mark the image segments labeled as outliers (defects) by the algorithm. Double detection occurs when the defects extend from one image segment to an adjacent one (see magnification). The large green rectangle marks the section of the sleeve, which was displayed before in <a href="#sensors-21-06569-f006" class="html-fig">Figure 6</a>. In total, 24 out of 26 manually labeled defects are correctly recognized as outliers, yielding a detection accuracy of 92%.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terahertz FMCW Transceivers
2.2. Terahertz Imaging Setup
2.3. Preliminary Studies on a Laboratory Scale Model
3. Results and Discussion
3.1. Measurement of Press Sleeves in Real-World Scenario
3.2. Automatic Detection of Defects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jepsen, P.; Cooke, D.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photon. Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Nüßler, D.; Jonuscheit, J. Terahertz based non-destructive testing (NDT): Making the invisible visible. tm—Tech. Mess. 2020, 88, 199–210. [Google Scholar] [CrossRef]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial Applications of Terahertz Sensing: State of Play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoik, C.; Bohn, M.; Blackshire, J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT & E Int. 2010, 43, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Amenabar, I.; Lopez, F.; Mendikute, A. In Introductory Review to THz Non-Destructive Testing of Composite Mater. J. Infrared Milli. Terahertz Waves 2013, 34, 152–169. [Google Scholar] [CrossRef]
- Cristofani, E.; Friederich, F.; Wohnsiedler, S.; Matheis, C.; Jonuscheit, J.; Vandewal, M.; Beigang, R. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection. Opt. Eng. 2014, 53, 031211. [Google Scholar] [CrossRef]
- Helander, J.; Ericsson, A.; Gustafsson, M.; Martin, T.; Sjoberg, D.; Larsson, C. Compressive Sensing Techniques for mm-Wave Nondestructive Testing of Composite Panels. IEEE Trans. Antennas Propag. 2017, 65, 5523–5531. [Google Scholar] [CrossRef]
- Zhong, M.; Liu, B.; Li, C.; Wang, Z.; Wei, D.; Zhou, B.; Dai, X.; Xu, Y. Terahertz Spectroscopy and Imaging Detection of Defects in Civil Aircraft Composites. J. Spectrosc. 2020, 2020, 2312936. [Google Scholar] [CrossRef]
- Reid, M.; Hartley, I.; Todoruk, T. Terahertz applications in the wood products industry. In Handbook of Terahertz Technology for Imaging, Sensing and Communications; Elsevier: Amsterdam, The Netherlands, 2013; pp. 547–578. [Google Scholar] [CrossRef]
- Krügener, K.; Stübling, E.M.; Jachim, R.; Kietz, B.; Koch, M.; Viöl, W. THz tomography for detecting damages on wood caused by insects. Appl. Opt. 2019, 58, 6063. [Google Scholar] [CrossRef]
- Banerjee, D.; Von Spiegel, W.; Thomson, M.D.; Schabel, S.; Roskos, H.G. Diagnosing water content in paper by terahertz radiation. Opt. Express 2008, 16, 9060–9066. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, S.; Vieweg, N.; Gärtner, G.; Plew, P.; Deninger, A. Towards Quality Control in Pharmaceutical Packaging: Screening Folded Boxes for Package Inserts. J. Infrared Millim. Terahertz Waves 2017, 38, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Krimi, S.; Klier, J.; Jonuscheit, J.; von Freymann, G.; Urbansky, R.; Beigang, R. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology. Appl. Phys. Lett. 2016, 109, 021105. [Google Scholar] [CrossRef]
- Weber, S.; Klier, J.; Ellrich, F.; Paustian, S.; Guttler, N.; Tiedje, O.; Jonuscheit, J.; von Freymann, G. Thickness determination of wet coatings using self-calibration method. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Zhong, S. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2019, 14, 273–281. [Google Scholar] [CrossRef]
- Chan, W.L.; Deibel, J.; Mittleman, D.M. Imaging with terahertz radiation. Rep. Prog. Phys. 2007, 70, 1325–1379. [Google Scholar] [CrossRef]
- Jansen, C.; Wietzke, S.; Peters, O.; Scheller, M.; Vieweg, N.; Salhi, M.; Krumbholz, N.; Jördens, C.; Hochrein, T.; Koch, M. Terahertz imaging: Applications and perspectives. Appl. Opt. 2010, 49, E48. [Google Scholar] [CrossRef] [Green Version]
- Friederich, F.; von Spiegel, W.; Bauer, M.; Meng, F.; Thomson, M.D.; Boppel, S.; Lisauskas, A.; Hils, B.; Krozer, V.; Keil, A.; et al. THz Active Imaging Systems with Real-Time Capabilities. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 183–200. [Google Scholar] [CrossRef]
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Toward real-time terahertz imaging. Adv. Opt. Photon. 2018, 10, 843. [Google Scholar] [CrossRef]
- Valušis, G.; Lisauskas, A.; Yuan, H.; Knap, W.; Roskos, H.G. Roadmap of Terahertz Imaging 2021. Sensors 2021, 21, 4092. [Google Scholar] [CrossRef] [PubMed]
- Abou-Khousa, M.A.; Ryley, A.; Kharkovsky, S.; Zoughi, R.; Daniels, D.; Kreitinger, N.; Steffes, G. Comparison of X-ray, Millimeter Wave, Shearography and Through-Transmission Ultrasonic Methods for Inspection of Honeycomb Composites. AIP Conf. Proc. 2007, 894, 999–1006. [Google Scholar] [CrossRef]
- Scherger, B.; Scheller, M.; Jansen, C.; Koch, M.; Wiesauer, K. Terahertz lenses made by compression molding of micropowders. Appl. Opt. 2011, 50, 2256. [Google Scholar] [CrossRef]
- Siemion, A. Terahertz Diffractive Optics—Smart Control over Radiation. J. Infrared Milli. Terahertz Waves 2019, 40, 477–499. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Chopard, A.; Fauquet, F.; Mounaix, P.; Guillet, J.P. Guided Reflectometry Imaging Unit Using Millimeter Wave FMCW Radars. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 647–655. [Google Scholar] [CrossRef]
- Bauer, M.; Matheis, C.; Mashkin, A.; Krane, S.; Pohlmann, F.; Friederich, F. Terahertz Non-destructive Testing of the Mica Insulation of Power Generator Bars in FMCW Measurements with a Dielectric Waveguide Antenna. In Proceedings of the 51st European Microwave Week (EuMW) 2021, London, UK, 13–18 February 2022. [Google Scholar]
- Herschel, R.; Pawliczek, S. 3D Millimeter Wave Screening of Wind Turbine Blade Segments. In Proceedings of the 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 26–28 September 2018; pp. 115–117. [Google Scholar] [CrossRef]
- Friederich, F.; May, K.; Baccouche, B.; Matheis, C.; Bauer, M.; Jonuscheit, J.; Moor, M.; Denman, D.; Bramble, J.; Savage, N. Terahertz Radome Inspection. Photonics 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Ellrich, F.; Bauer, M.; Schreiner, N.; Keil, A.; Pfeiffer, T.; Klier, J.; Weber, S.; Jonuscheit, J.; Friederich, F.; Molter, D. Terahertz Quality Inspection for Automotive and Aviation Industries. J. Infrared Millim. Terahertz Waves 2019, 41, 470–489. [Google Scholar] [CrossRef] [Green Version]
- Ok, G.; Kim, H.J.; Chun, H.S.; Choi, S.W. Foreign-body detection in dry food using continuous sub-terahertz wave imaging. Food Control 2014, 42, 284–289. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Hajeb, P.; Ara, P.; Ehsani, R.J. A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1563–1621. [Google Scholar] [CrossRef]
- Abina, A.; Puc, U.; Jeglič, A.; Zidanšek, A. Structural characterization of thermal building insulation materials using terahertz spectroscopy and terahertz pulsed imaging. NDT & E Int. 2016, 77, 11–18. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- Fukunaga, K. THz Technology Applied to Cultural Heritage in Practice; Springer: Tokyo, Japan, 2016; OCLC: 959603079. [Google Scholar]
- Dandolo, C.L.K.; Guillet, J.P.; Ma, X.; Fauquet, F.; Roux, M.; Mounaix, P. Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis. Opt. Express 2018, 26, 5358. [Google Scholar] [CrossRef]
- Bauer, M.; Keil, A.; Matheis, C.; Fukunaga, K.; Aramini, F.; Palazzo, M.; Dall’Aglio, L.; Friederich, F. Terahertz FMCW measurements of Leonardo da Vinci’s “The Last Supper” and other investigations in the field of cultural heritage. In Proceedings of the 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 8–13 November 2020; pp. 01–02. [Google Scholar] [CrossRef]
- Stuebling, E.M.; Staats, N.A.; Globisch, B.; Schell, M.; Portsteffen, H.D.; Koch, M. Investigating the layer structure and insect tunneling on a wooden putto using robotic-based THz tomography. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 343–347. [Google Scholar] [CrossRef]
- Brooker, G.M. Understanding Millimetre Wave FMCW Radars. In Proceedings of the 1st International Conference on Sensing Technology (ICST), Palmerston North, New Zealand, 21–23 November 2005; pp. 152–157. [Google Scholar]
- Park, H.; Son, J.H. Machine Learning Techniques for THz Imaging and Time-Domain Spectroscopy. Sensors 2021, 21, 1186. [Google Scholar] [CrossRef] [PubMed]
- Sarjaš, A.; Pongrac, B.; Gleich, D. Automated Inorganic Pigment Classification in Plastic Material Using Terahertz Spectroscopy. Sensors 2021, 21, 4709. [Google Scholar] [CrossRef] [PubMed]
- Motlak, H.J.; Hakeem, S.I. Detection and Classification of Breast Cancer Based-On Terahertz Imaging Technique Using Artificial Neural Network & K-Nearest Neighbor Algorithm. Int. J. Appl. Eng. Res. 2017, 12, 9. [Google Scholar]
- Chakraborty, B.; Sen, R.; Mandal, A.K. A Survey on Machine Learning Techniques for THz Image Analysis. In Terahertz Biomedical and Healthcare Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 167–176. [Google Scholar] [CrossRef]
- Friederich, F.; Cristofani, E.; Matheis, C.; Jonuscheit, J.; Beigang, R.; Vandewal, M. Continuous wave terahertz inspection of glass fiber reinforced plastics with semi-automatic 3-D image processing for enhanced defect detection. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Chen, T.; Xu, D.; Zhao, H.; Chen, L.; Yan, C.; Tang, L.; He, Y.; Feng, H.; et al. Automatic evaluation of traumatic brain injury based on terahertz imaging with machine learning. Opt. Express 2018, 26, 6371. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, I.; Egerer, P.; Schür, J.; Vossiek, M. Automated Defect Detection for Non-Destructive Evaluation by Radar Imaging and Machine Learning. In Proceedings of the 2020 German Microwave Conference (GeMiC), Cottbus, Germany, 9–11 March 2020; p. 4. [Google Scholar]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [Google Scholar] [CrossRef]
- Schreiner, N.S.; Sauer-Greff, W.; Urbansky, R.; von Freymann, G.; Friederich, F. Multilayer Thickness Measurements below the Rayleigh Limit Using FMCW Millimeter and Terahertz Waves. Sensors 2019, 19, 3910. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.M.; Kahl, M.; Haring Bolívar, P.; Kolb, A. Computational Image Enhancement for Frequency Modulated Continuous Wave (FMCW) THz Image. J. Infrared Milli. Terahertz Waves 2019, 40, 775–800. [Google Scholar] [CrossRef] [Green Version]
- Caulfield, J.T.; Wilson, J.A.; Dhar, N.K. Spatial oversampling in imaging sensors: Benefits in sensitivity and detection. In Proceedings of the 2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 9–11 October 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Amer, M.; Goldstein, M.; Abdennadher, S. Enhancing one-class support vector machines for unsupervised anomaly detection. In Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description—ODD ’13, Chicago, IL, USA, 11 August 2013; pp. 8–15. [Google Scholar] [CrossRef]
- Staar, B.; Lütjen, M.; Freitag, M. Anomaly detection with convolutional neural networks for industrial surface inspection. Procedia CIRP 2019, 79, 484–489. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, M.; Hussung, R.; Matheis, C.; Reichert, H.; Weichenberger, P.; Beck, J.; Matuschczyk, U.; Jonuscheit, J.; Friederich, F. Fast FMCW Terahertz Imaging for In-Process Defect Detection in Press Sleeves for the Paper Industry and Image Evaluation with a Machine Learning Approach. Sensors 2021, 21, 6569. https://doi.org/10.3390/s21196569
Bauer M, Hussung R, Matheis C, Reichert H, Weichenberger P, Beck J, Matuschczyk U, Jonuscheit J, Friederich F. Fast FMCW Terahertz Imaging for In-Process Defect Detection in Press Sleeves for the Paper Industry and Image Evaluation with a Machine Learning Approach. Sensors. 2021; 21(19):6569. https://doi.org/10.3390/s21196569
Chicago/Turabian StyleBauer, Maris, Raphael Hussung, Carsten Matheis, Hermann Reichert, Peter Weichenberger, Jens Beck, Uwe Matuschczyk, Joachim Jonuscheit, and Fabian Friederich. 2021. "Fast FMCW Terahertz Imaging for In-Process Defect Detection in Press Sleeves for the Paper Industry and Image Evaluation with a Machine Learning Approach" Sensors 21, no. 19: 6569. https://doi.org/10.3390/s21196569
APA StyleBauer, M., Hussung, R., Matheis, C., Reichert, H., Weichenberger, P., Beck, J., Matuschczyk, U., Jonuscheit, J., & Friederich, F. (2021). Fast FMCW Terahertz Imaging for In-Process Defect Detection in Press Sleeves for the Paper Industry and Image Evaluation with a Machine Learning Approach. Sensors, 21(19), 6569. https://doi.org/10.3390/s21196569