Automated Inorganic Pigment Classification in Plastic Material Using Terahertz Spectroscopy
<p>Experimental setup with photoconductive antennas (PCAs) and plastic sample in green.</p> "> Figure 2
<p>Five plastic samples with different inorganic pigments.</p> "> Figure 3
<p>The structure of the Terascan 1550 THz-FDS (frequency domain spectroscopy) system.</p> "> Figure 4
<p>Dispersion in the measured medium.</p> "> Figure 5
<p>Phase change dependency on the variable frequency at fixed distance <span class="html-italic">L</span> between emitter PCA and detector PCA.</p> "> Figure 6
<p>THz frequency sweep-phase fringes.</p> "> Figure 7
<p>Set cut-technique (SetCT) transformation technique.</p> "> Figure 8
<p>The windowing spectrum dilation (WSD) transformation technique.</p> "> Figure 9
<p>Preprocessing sequences; peak-find function, envelope extraction, downsampling, and WSD algorithm.</p> "> Figure 10
<p>Convolutional neural network (CNN) structure for full-resolution 2D data.</p> "> Figure 11
<p>CNN structure for low-resolution 2D data.</p> "> Figure 12
<p>SetCT and WSD 2D transformation.</p> "> Figure 13
<p>The experimental procedure.</p> "> Figure 14
<p>Confusion matrix of SetCT<sub>high</sub>, SetCT<sub>low</sub> WSD<sub>high,</sub> and WSD<sub>low</sub>.</p> "> Figure 15
<p>Confusion matrix of support vector machine (SVM), naive Bayes (NB), classification tree (CT), and discriminant analysis (DA) classification algorithms.</p> ">
Abstract
:1. Introduction
2. Terahertz Frequency Domain Spectroscopy Principle for Inorganic Pigments (IP) Classification
3. THz Data Processing
3.1. Preprocessing the Measured Phase Fringes
3.2. Peak Detection, Envelope Extraction, and Downsampling
3.3. Data Series Transformation with the Windowing Spectrum Dilation Algorithm
4. Convolutional Neural Network Structure Selection and Learning Procedure
4.1. Convolutional Neural Network (CNN) Structure and Hyperparameters’ Selection
4.2. CNN Training
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yun-Shik, L. Principles of Terahertz Science and Technology; Springer Science & Business Media: Boston, MA, USA, 2009. [Google Scholar]
- Baxter, J.B.; Guglietta Terahertz, G.W. Terahertz Spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safian, R.; Ghazi, G.; Mohammadian, N. Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.-Y.; Wu, X.-J.; Wang, B.; Gao, Y.; Dai, J.; Wang, L.; Ruan, C.J.; Miao, J.-G. High resolution continuous wave terahertz spectroscopy on solid-state samples with coherent detection. Opt. Express 2018, 26, 17964–17976. [Google Scholar] [CrossRef] [PubMed]
- Valíček, J.; Harničárová, M.; Öchsner, A.; Hutyrová, Z.; Kušnerová, M.; Tozan, H.; Michenka, V.; Šepelák, V.; Mitaľ, D.; Zajac, J. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material. Materials 2015, 8, 7401–7422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kent, R. Quality Management in Plastics Processing, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Jung, H.; Lee, C.W.; Park, G. Fast and Non-invasive Surface Crack Detection of Press Panels Using Image Processing. Procedia Eng. 2017, 188, 72–79. [Google Scholar] [CrossRef]
- Michalik, P.; Zajac, J.; Hatala, M.; Mital, D.; Fecova, V. Monitoring surface roughness of thin-walled components from steel C45 machining down and up milling. Measurement 2014, 58, 416–428. [Google Scholar] [CrossRef]
- Fischer, B.M.; Wietzke, S.; Reuter, M.; Peters, O.; Gente, R.; Jansen, C.; Vieweg, N.; Koch, M. Investigating material characteristics and morphology of polymers using terahertz technologies. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 259–268. [Google Scholar] [CrossRef]
- Wietzke, S.; Jansen, C.; Reuter, M.; Jung, T.; Kraft, D.; Chatterjee, S.; Fischer, B.M.; Koch, M. Terahertz spectroscopy on polymers: A review of morphological studies. J. Mol. Struct. 2011, 1006, 41–51. [Google Scholar] [CrossRef]
- Yakovlev, E.V.; Zaytsev, K.I.; Dolganova, I.N.; Yurchenko, S.O. Non-destructive evaluation of polymer composite materials at themanufacturing stage using terahertz pulsed spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 810–816. [Google Scholar] [CrossRef]
- Sommer, S.; Raidt, T.; Fischer, B.M.; Katzenberg, F.; Tiller, J.C.; Koch, M. THz-spectroscopy on high density polyethylene with dierent crystallinity. J. Infrared Millim. Terahertz Waves 2016, 37, 189–197. [Google Scholar] [CrossRef]
- Engelbrecht, S.; Tybussek, K.; Sampaio, J.; Böhmler, J.; Fischer, B.M.; Sommer, S. Monitoring the Isothermal Crystallization Kinetics of PET-A Using THz-TDS. J. Infrared Millim. Terahertz Waves 2019, 40, 306–313. [Google Scholar] [CrossRef]
- Shi, C.; Ma, Y.; Zhang, J.; Wei, D.; Wang, H.; Peng, X.; Tang, M.; Yan, S.; Zuo, G.; Du, C.; et al. Terahertz time-domain spectroscopy of chondroitin sulfate. Biomed. Opt. Express 2018, 9, 1350. [Google Scholar] [CrossRef] [Green Version]
- Bernier, M.; Garet, F.; Coutaz, J.L. Precise determination of the complex refractive index of scattering and absorbing samples by combining THz-TDS and a Kramers-Kronig analysis. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 9–10. [Google Scholar] [CrossRef]
- Pohl, A.; Deßmann, N.; Dutzi, K.; Hübers, H.W. Identification of Unknown Substances by Terahertz Spectroscopy and Multivariate Data Analysis. J. Infrared Millim. Terahertz Waves 2016, 37, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Rothbart, N.; Deng, X.; Geng, H.; Zheng, X.; Neumaier, P.; Hübers, H.W. Qualitative and quantitative analysis of terahertz gas-phase spectroscopy using independent component analysis. Chemom. Intell. Lab. Syst. 2020, 206, 104129. [Google Scholar] [CrossRef]
- Liu, J. Terahertz spectroscopy and chemometrics classification of transgenic corn oil from corn edible oil. Microw. Opt. Technol. Lett. 2017, 59, 654–658. [Google Scholar] [CrossRef]
- Ren, A.; Zahid, A.; Imran, M.A.; Alomainy, A.; Fan, D.; Abbasi, Q.H. Terahertz sensing for fruit spoilage monitoring. arXiv 2018, arXiv:1804.10587. [Google Scholar]
- Lu, J.-H.; Chen, C.; Huang, C.; Leu, S.-Y.; Lee, D.-J. Glucose fermentation with biochar amended consortium: Sequential fermentations. Bioresour. Technol. 2020, 303, 122933. [Google Scholar] [CrossRef] [PubMed]
- Hassaballah, M.; Awad, A.I. Deep Learning in Computer Vision: Principles and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, R.; Park, B.; Eady, M.; Ouyang, Q.; Chen, K. Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks. Appl. Microbiol. Biotechnol. 2020, 104, 3157–3166. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cao, Y.; Li, Y.; Xiao, X.; Qiu, Q.; Yang, M.; Zhao, Y.; Cui, L. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network. Comput. Methods Programs Biomed. 2020, 187, 105019. [Google Scholar] [CrossRef]
- Brili, N.; Ficko, M.; Klančnik, S. Automatic Identification of Tool Wear Based on Thermography and a Convolutional Neural Network during the Turning Process. Sensors 2021, 21, 1917. [Google Scholar] [CrossRef] [PubMed]
- Kakani, V.; Cui, X.; Ma, M.; Kim, H. Vision-Based Tactile Sensor Mechanism for the Estimation of Contact Position and Force Distribution Using Deep Learning. Sensors 2021, 21, 1920. [Google Scholar] [CrossRef] [PubMed]
- Malajner, M.; Gleich, D.; Planinsic, P. Soil type characterization for moisture estimation using machine learning and UWB-Time of Flight measurements. Measurement 2019, 146, 537–543. [Google Scholar] [CrossRef]
- Japkowicz, N.; Shah, M. Evaluating Learning Algorithms: A Classification Perspective, 1st ed.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Suthaharan, S. Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning; Springer: Boston, MA, USA, 2016. [Google Scholar]
- Njegovec, M.; Donlagic, D. Rapid and broad wavelength sweeping of standard telecommunication distributed feedback laser diode. Opt. Lett. 2013, 38, 1999–2001. [Google Scholar] [CrossRef]
- Guo, R.; Lu, J.; Liu, S.; Shi, Y.; Zhou, Y.; Chen, Y.; Luan, J.; Chen, X. Multisection DFB Tunable Laser Based on REC Technique and Tuning by Injection Current. IEEE Photon. J. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Jacobsen, R.; Keiding, S.R. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B 1996, 13, 2424–2436. [Google Scholar] [CrossRef]
- Saeedkia, D. Terahertz photoconductive antennas: Principles and applications. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP 2011), Rome, Italy, 11–15 April 2011; pp. 3326–3328. [Google Scholar]
- Sezer, O.B.; Ozbayoglu, A.M. Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Appl. Soft Comput. J. 2018, 70, 525–538. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans. Ind. Electron. 2017, 65, 5990–5998. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Xie, M.; Hu, L.; Wang, J. A new approach for fault diagnosis with full-scope simulator based on state information imaging in nuclear power plant. Ann. Nucl. Energy 2020, 141, 107274. [Google Scholar] [CrossRef]
- Lee, G.; Lee, S.J.; Lee, C. A convolutional neural network model for abnormality diagnosis in a nuclear power plant. Appl. Soft Comput. 2021, 99, 106874. [Google Scholar] [CrossRef]
- Li, H.; Lin, Z.; Shen, X.; Brandt, J.; Hua, G. A convolutional neural network cascade for face detection. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5325–5334. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1, 1097–1105. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference Learn. Represent. (ICLR), San Diego, CA, USA, 5–8 May 2015. [Google Scholar]
- Bock, S.; Goppold, J.; Weiß, M. An improvement of the convergence proof of the ADAM-Optimizer. In Proceedings of the OTH-Clusterkonferenz, Weiden, Germany, 13 April 2018. [Google Scholar]
- Jais, I.K.M.; Ismail, A.R.; Nisa, S.Q. Adam Optimization Algorithm for Wide and Deep Neural Network. Knowl. Eng. Data Sci. 2019, 2, 41–46. [Google Scholar] [CrossRef]
- Caña, J.L.; Herrero, J.G.; López, J.M. Forecasting Nonlinear Systems with LSTM: Analysis and Comparison with EKF. Sensors 2021, 21, 1805. [Google Scholar] [CrossRef] [PubMed]
SetCTfull | 0.965 | 5.40 | 0.001 | 1500 |
SWDfull | 0.972 | 4.10 | 0.001 | 1500 |
SetCTlow | 0.85 | 0.35 | 0.003 | 350 |
SWDlow | 0.968 | 0.15 | 0.003 | 350 |
Black | |||||
---|---|---|---|---|---|
SetCTfull | 241.5 | 0.951 | 0.054 | 1 | 0.35 |
SWDfull | 242.7 | 0.991 | 0.039 | 1 | 0.41 |
SetCTlow | 1.42 | 0.722 | 0.250 | 0.933 | 0.23 |
SWDlow | 1.65 | 0.985 | 0.041 | 1 | 0.37 |
Blue | |||||
---|---|---|---|---|---|
SetCTfull | 240.1 | 0.955 | 0.037 | 1 | 0.38 |
SWDfull | 241.2 | 0.984 | 0.036 | 1 | 0.37 |
SetCTlow | 1.71 | 0.756 | 0.231 | 0.93 | 0.25 |
SWDlow | 1.66 | 0.979 | 0.039 | 1 | 0.33 |
Green | |||||
---|---|---|---|---|---|
SetCTfull | 242.2 | 0.962 | 0.031 | 1 | 0.391 |
SWDfull | 244.1 | 0.977 | 0.033 | 1 | 0.392 |
SetCTlow | 1.52 | 0.723 | 0.251 | 0.943 | 0.311 |
SWDlow | 1.71 | 0.976 | 0.029 | 1 | 0.381 |
White | |||||
---|---|---|---|---|---|
SetCTfull | 243.1 | 0.963 | 0.028 | 1 | 0.423 |
SWDfull | 245.1 | 0.984 | 0.023 | 1 | 0.457 |
SetCTlow | 1.22 | 0.812 | 0.128 | 0.935 | 0.341 |
SWDlow | 1.31 | 0.981 | 0.032 | 1 | 0.421 |
Yellow | |||||
---|---|---|---|---|---|
SetCTfull | 242.23 | 0.979 | 0.023 | 1 | 0.533 |
SWDfull | 242.72 | 0.986 | 0.024 | 1 | 0.512 |
SetCTlow | 1.71 | 0.762 | 0.169 | 0.919 | 0.216 |
SWDlow | 1.45 | 0.984 | 0.025 | 1 | 0.491 |
Algorithm | |||||
---|---|---|---|---|---|
SetCTfull | 242.23 | 0.962 | 0.023 | 1 | 0.533 |
SWDfull | 242.72 | 0.984 | 0.024 | 1 | 0.512 |
SetCTlow | 1.71 | 0.755 | 0.169 | 0.919 | 0.216 |
SWDlow | 1.45 | 0.981 | 0.025 | 1 | 0.491 |
SVM | 1.17 | 0.73 | 0.23 | 0.851 | 0.123 |
NB | 1.28 | 0.74 | 0.25 | 0.898 | 0.231 |
CT | 1.21 | 0.51 | 0.31 | 0.71 | 0.02 |
DA | 1.24 | 0.89 | 0.102 | 1 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarjaš, A.; Pongrac, B.; Gleich, D. Automated Inorganic Pigment Classification in Plastic Material Using Terahertz Spectroscopy. Sensors 2021, 21, 4709. https://doi.org/10.3390/s21144709
Sarjaš A, Pongrac B, Gleich D. Automated Inorganic Pigment Classification in Plastic Material Using Terahertz Spectroscopy. Sensors. 2021; 21(14):4709. https://doi.org/10.3390/s21144709
Chicago/Turabian StyleSarjaš, Andrej, Blaž Pongrac, and Dušan Gleich. 2021. "Automated Inorganic Pigment Classification in Plastic Material Using Terahertz Spectroscopy" Sensors 21, no. 14: 4709. https://doi.org/10.3390/s21144709
APA StyleSarjaš, A., Pongrac, B., & Gleich, D. (2021). Automated Inorganic Pigment Classification in Plastic Material Using Terahertz Spectroscopy. Sensors, 21(14), 4709. https://doi.org/10.3390/s21144709