On the Wireless Microwave Sensing of Bacterial Membrane Potential in Microfluidic-Actuated Platforms
<p>Cells are categorized into eukaryote and prokaryote cells. Additionally, bacteria are categorized according to Gram-negative and Gram-positive, relating to different membrane or wall structure characteristics, as depicted in the upper/middle-right panel. The dynamic process known as an action potential happens in both types of cells. In particular, the membrane potential, given a specific location, changes in time in response to a stimulus or perturbation, as depicted in the bottom graph.</p> "> Figure 2
<p>Comparison of several methods for bio-particle detection techniques reported in the literature (optical, microwave, electric and others). In order to compare the different measurement times for different total analyzed volumes, the time was normalized to the equivalent time required to analyze a volume of <math display="inline"><semantics> <mrow> <mn>100</mn> <mo> </mo> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">L</mi> </mrow> </mrow> </semantics></math>. Fluid management is divided into micro, macro and other. The parameter specificity is divided into high, medium and low.</p> "> Figure 3
<p>Illustration of the hydrodynamic forces acting on particles in an elasto-inertial microfluidic channel. The particles are randomly distributed at the inlet of the channel. The interaction, and final balance, of the wall-normal forces results in the focusing of the particles at the centerline. The main forces are shear-gradient lift force (yellow), wall-interaction force (violet), viscoelastic force (red) and Stokes’ drag force (green).</p> "> Figure 4
<p>Regime diagram of the dimensionless Reynolds (<math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> </mrow> </semantics></math>) and Weissenberg (<math display="inline"><semantics> <mrow> <mi>W</mi> <mi>i</mi> </mrow> </semantics></math>) numbers for viscoelastic fluids of inertial flows in microfluidic channels. The colormap corresponds to the squared blockage ratio (<math display="inline"><semantics> <mi>κ</mi> </semantics></math>) multiplied by the slenderness ratio (<math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>F</mi> </msub> <mo>/</mo> <msub> <mi>D</mi> <mi>h</mi> </msub> </mrow> </semantics></math>); a value of <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> has been utilized. The diagonal dashed line (critical elasticity number <math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>l</mi> <mi>c</mi> </msub> <mo>∼</mo> <mn>0.01</mn> </mrow> </semantics></math>) separates elasto-inertial from inertial focusing regimes, while the vertical dot-dashed line separates laminar (<math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo><</mo> <mn>2300</mn> </mrow> </semantics></math>) from transitional/turbulent flow regimes. The red dashed rectangle indicates the parameter design space targeted for sensing bacteria using microwave-based techniques.</p> "> Figure 5
<p>The electromagnetic response of bacteria depends on their shape and size, their internal structure and the complex relative permittivity of the different bacterial cell components, which may depend on the bacterial physiological state. (<b>a</b>) Scheme of the configuration and relevant values considered, where <math display="inline"><semantics> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> </mrow> <mo>∗</mo> </msubsup> </mrow> </semantics></math> stands for complex relative permittivity of the single cell, <math display="inline"><semantics> <mi>a</mi> </semantics></math> radius, <math display="inline"><semantics> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>m</mi> </mrow> <mo>∗</mo> </msubsup> </mrow> </semantics></math> complex relative permittivity of the surrounding medium, <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>p</mi> </msub> <mo> </mo> </mrow> </semantics></math> is the length of the illumination and detection plates, and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>s</mi> </msub> </mrow> </semantics></math> is the distance to the cell (considered equally spaced). (<b>b</b>) Real relative permittivity, conductivity and thickness/volume of the different parts of bacteria have been extracted from [<a href="#B52-sensors-21-03420" class="html-bibr">52</a>,<a href="#B53-sensors-21-03420" class="html-bibr">53</a>] and are congruent with [<a href="#B29-sensors-21-03420" class="html-bibr">29</a>,<a href="#B34-sensors-21-03420" class="html-bibr">34</a>].</p> "> Figure 6
<p>Microwave complex relative permittivity, expected capacitance change and scattering signal levels (near-field) for small <math display="inline"><semantics> <mrow> <mn>1</mn> <mrow> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> particles. (<b>a</b>) Complex relative permittivity values for the frequency range <math display="inline"><semantics> <mrow> <mn>0.1</mn> <mo>−</mo> <mn>100</mn> <mrow> <mo> </mo> <mi>GHz</mi> </mrow> <mo> </mo> </mrow> </semantics></math> approximated from [<a href="#B29-sensors-21-03420" class="html-bibr">29</a>,<a href="#B34-sensors-21-03420" class="html-bibr">34</a>,<a href="#B52-sensors-21-03420" class="html-bibr">52</a>,<a href="#B53-sensors-21-03420" class="html-bibr">53</a>], with addition of (i) water, (ii) bacteria in an action potential process and (iii) polystyrene beads. (<b>b</b>) Expected capacitance change and scattering detection signal levels.</p> "> Figure 7
<p>Schematics of the experimental setup. The system is computer controlled and consists of an inverted fluorescence microscope with image sensor, a pressure-driven flow-controlled microfluidic pump, and an electromagnetic measurement station composed of a lock-in amplifier and a visualization oscilloscope. The microfluidic chips used have connectorized square cross-section channels with cross-sections of <math display="inline"><semantics> <mrow> <mn>50</mn> <mrow> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>100</mn> <mrow> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math>, and with a length of <math display="inline"><semantics> <mrow> <mn>60</mn> <mrow> <mtext> </mtext> <mi>mm</mi> </mrow> </mrow> </semantics></math>. The electrodes are integrated within the microchips and connected through RF lines to the lock-in amplifier.</p> "> Figure 8
<p>This figure shows <math display="inline"><semantics> <mrow> <mn>10</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>1</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> particle visco-elastic hydrodynamic focusing measurements: (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>10</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> particle hydrodynamic focusing (optimum focusing for <math display="inline"><semantics> <mrow> <mo>∼</mo> <mn>30</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">L</mi> </mrow> <mo>/</mo> <mi>min</mi> </mrow> </semantics></math>) was assessed in a <math display="inline"><semantics> <mrow> <mn>100</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> cross-section channel, imaged with a <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>×</mo> </mrow> </semantics></math> microscope objective; (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>1</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> particle hydrodynamic focusing (optimum focusing for <math display="inline"><semantics> <mrow> <mn>25</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">L</mi> </mrow> <mo>/</mo> <mi>min</mi> </mrow> </semantics></math>) was assessed in a <math display="inline"><semantics> <mrow> <mn>50</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> cross-section channel, imaged with a <math display="inline"><semantics> <mrow> <mn>40</mn> <mo>×</mo> </mrow> </semantics></math> microscope objective. (<b>c</b>) For the two different beads sizes, the quality of the hydrodynamic focusing was assessed in terms of the standard deviation width of the particle wake measured and compared to theoretical estimations.</p> "> Figure 9
<p>Microwave complex relative permittivity for different media. Measured complex relative permittivity of water, beads and bacteria in the range 0.1–6 GHz using the techniques described in [<a href="#B63-sensors-21-03420" class="html-bibr">63</a>,<a href="#B64-sensors-21-03420" class="html-bibr">64</a>], which are in concordance with [<a href="#B29-sensors-21-03420" class="html-bibr">29</a>].</p> "> Figure 10
<p>Electromagnetic measurement results for <math display="inline"><semantics> <mrow> <mn>1</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>10</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> polystyrene beads transformed into equivalent capacitance change. The blue and green solid lines represent the detected levels of voltage magnitude and phase, while the dashed lines represent the sensitivity limit of the system (magnitude and phase).</p> "> Figure 11
<p>Nonlinear voltage-current response of the membrane potential. (<b>a</b>) Current density non-linear dependence with the differential voltage potential. (<b>b</b>) Induced current density due to the self-generated transmembrane potential and the impinging microwave field at two different membrane potential states, while (i) at rest and (ii) generating an active potential. (<b>c</b>) Frequency domain analysis where the fundamental frequency scattering is due to the membrane. (<b>d</b>) Frequency plot of the expected relative second-order responses at rest and at an action potential state.</p> "> Figure 12
<p>Second-order generated signal power dependence with illumination irradiance and frequency for <math display="inline"><semantics> <mrow> <mn>1</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> bio-particles. (<b>a</b>) Colormap plots of the capacitance change (<b>a</b>) and scattering level (<b>b</b>) associated with the second-order response with respect to the irradiance and frequency.</p> "> Figure 13
<p>The signal levels regarding capacitance change and scattering levels for first-order (detection) and second-order (sensing of membrane potential) for <math display="inline"><semantics> <mrow> <mn>10</mn> <mtext> </mtext> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math>-sized bio-particles.</p> ">
Abstract
:1. Introduction
2. EM Detection Techniques
3. Design of the Microfluidic Platform for Elasto-Inertial Focusing of Particles
3.1. Dimensionless Numbers and Characteristic Regimes
3.2. Microfluidic Design for Microwave-Based Sensing of Bacteria
4. Design of the Microwave Detection Sensor
4.1. Scattering by a Small Spherical Particle
Near-Field Regime
4.2. Microwave Scattering of Bio-Particles
5. Experimental Results
6. Discussion on Membrane Potential Detection
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burke, P.; Rutherglen, C. Towards a single-chip, implantable RFID system: Is a single-cell radio possible? Biomed. Microdevices 2010, 12, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, D.; Nemati, Z.; Lee, C.-H.; Li, J.; Haddadi, K.; Wallace, D.C.; Burke, P.J. An ultra-high bandwidth nano-electronic interface to the interior of living cells with integrated fluorescence readout of metabolic activity. Sci. Rep. 2020, 10, 10756. [Google Scholar] [CrossRef]
- Abgrall, P.; Gué, A.-M. Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem—A review. J. Micromech. Microeng. 2007, 17, R15. [Google Scholar] [CrossRef]
- Yang, K.; Peretz-Soroka, H.; Liu, Y.; Lin, F. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab Chip 2016, 16, 943–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrotra, P.; Chatterjee, B.; Sen, S. EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing. Sensors 2019, 19, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, D.-C.; Fang, L.-D.; Fang, W.-H.; Lee, C.-H. Tradeoff study of microwave imaging for biomedical application. In Proceedings of the 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Singapore, 9–11 December 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Bolomey, J.-C. Advancing Microwave-Based Imaging Techniques for Medical Applications in the Wake of the 5G Revolution. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP 2019), Krakow, Poland, 31 March–5 April 2019. [Google Scholar]
- Bao, J.; Markovic, T.; Brancato, L.; Kil, D.; Ocket, I.; Puers, R.; Nauwelaers, B. Novel Fabrication Process for Integration of Microwave Sensors in Microfluidic Channels. Micromachines 2020, 11, 320. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Maenhout, G.; Markovic, T.; Ocket, I.; Nauwelaers, B. A Microwave Platform for Reliable and Instant Interconnecting Combined with Microwave-Microfluidic Interdigital Capacitor Chips for Sensing Applications. Sensors 2020, 20, 1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, J.-C.; Niknejad, A.M. Oscillator-Based Reactance Sensors with Injection Locking for High-Throughput Flow Cytometry Using Microwave Dielectric Spectroscopy. IEEE J. Solid-State Circuits 2016, 51, 457–472. [Google Scholar] [CrossRef]
- Jofre, L.; Hawley, M.; Broquetas, A.; Reyes, E.D.L.; Ferrando, M.; Elias-Fuste, A. Medical imaging with a microwave tomographic scanner. IEEE Trans. Biomed. Eng. 1990, 37, 303–312. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Wereley, S.T. Fundamentals and Applications of Microfluidics, 2nd ed.; Artech Print on Demand: Boston, MA, USA, 2006. [Google Scholar]
- Di Carlo, D. Inertial microfluidics. Lab Chip 2009, 9, 3038–3046. [Google Scholar] [CrossRef]
- Pérez, J.M.; Jofre, M.; Martínez, P.; Yáñez, M.A.; Catalan, V.; Pruneri, V. An image cytometer based on angular spatial frequency processing and its validation for rapid detection and quantification of waterborne microorganisms. Analyst 2015, 140, 7734–7741. [Google Scholar] [CrossRef] [Green Version]
- Pruneri, V.; Jofre, M.; Rosas, J.M.P. Image Cytometer for Characterization and Quantification of Particulate Samples. U.S. Patent 10346972B2, 9 July 2019. [Google Scholar]
- Abbasian, F.; Ghafar-Zadeh, E.; Magierowski, S. Microbiological Sensing Technologies: A Review. Bioengineering 2018, 5, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzner, G.; Stavrakis, S.; de Mello, A. Elasto-Inertial Focusing of Mammalian Cells and Bacteria Using Low Molecular, Low Viscosity PEO Solutions. Anal. Chem. 2017, 89, 11653–11663. [Google Scholar] [CrossRef]
- Asghari, M.; Serhatlioglu, M.; Ortaç, B.; Solmaz, M.E.; Elbuken, C. Sheathless Microflow Cytometry Using Viscoelastic Fluids. Sci. Rep. 2017, 7, 12342. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-B.; Lin, C.-H.; Chang, G.-L. Micro flow cytometers with buried SU-8/SOG optical waveguides. Sens. Actuators A Phys. 2003, 103, 165–170. [Google Scholar] [CrossRef]
- Etcheverry, S.; Faridi, A.; Ramachandraiah, H.; Kumar, T.; Margulis, W.; Laurell, F.; Russom, A. High performance micro-flow cytometer based on optical fibres. Sci. Rep. 2017, 7, 5628. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, E.M.; Brooker, J. Method, System, and Compositions for Cell Counting and Analysis. U.S. Patent 20100261197A1, 14 October 2010. [Google Scholar]
- Li, B.; Qiu, Y.; Glidle, A.; McIlvenna, D.; Luo, Q.; Cooper, J.; Shi, H.-C.; Yin, H. Gradient Microfluidics Enables Rapid Bacterial Growth Inhibition Testing. Anal. Chem. 2014, 86, 3131–3137. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Sakakihara, S.; Grushnikov, A.; Kikuchi, K.; Noji, H.; Yamaguchi, A.; Iino, R.; Yagi, Y.; Nishino, K. A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLoS ONE 2016, 11, e0148797. [Google Scholar] [CrossRef] [PubMed]
- Hsiung, F. Comparison of Count Reproducibility, Accuracy, and TC20 Automated Cell Counter; Technical Document BioRad; BioRad: Hercules, CA, USA, 2013; pp. 1–4. [Google Scholar]
- Graves, S.W.; Nolan, J.P.; Jett, J.H.; Martin, J.C.; Sklar, L.A. Nozzle design parameters and their effects on rapid sample delivery in flow cytometry. Cytometery 2002, 47, 127–137. [Google Scholar] [CrossRef] [Green Version]
- McKenna, B.K.; Evans, J.G.; Cheung, M.C.; Ehrlich, D.J. A parallel microfluidic flow cytometer for high-content screening. Nat. Methods 2011, 8, 401–403. [Google Scholar] [CrossRef]
- Göröcs, Z.; Ling, Y.; Yu, M.D.; Karahalios, D.; Mogharabi, K.; Lu, K.; Wei, Q.; Ozcan, A. Giga-pixel fluorescent imaging over an ultra-large field-of-view using a flatbed scanner. Lab Chip 2013, 13, 4460–4466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narang, R.; Mohammadi, S.; Ashani, M.M.; SadAbadi, H.; Hejazi, H.; Zarifi, M.H.; Sanati-Nezhad, A. Sensitive, Real-time and Non-Intrusive Detection of Concentration and Growth of Pathogenic Bacteria using Microfluidic-Microwave Ring Resonator Biosensor. Sci. Rep. 2018, 8, 15807. [Google Scholar] [CrossRef]
- Li, H.; Multari, C.; Palego, C.; Ma, X.; Du, X.; Ning, Y.; Buceta, J.; Hwang, J.C.; Cheng, X. Differentiation of live and heat-killed E. coli by microwave impedance spectroscopy. Sens. Actuators B Chem. 2018, 255, 1614–1622. [Google Scholar] [CrossRef] [Green Version]
- Jankovic, N.; Radonic, V. A Microwave Microfluidic Sensor Based on a Dual-Mode Resonator for Dual-Sensing Applications. Sensors 2017, 17, 2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenier, K.; Dubuc, D.; Poleni, P.-E.; Kumemura, M.; Toshiyoshi, H.; Fujii, T.; Fujita, H. Integrated Broadband Microwave and Microfluidic Sensor Dedicated to Bioengineering. IEEE Trans. Microw. Theory Tech. 2009, 57, 3246–3253. [Google Scholar] [CrossRef]
- Chien, J.-C.; Ameri, A.; Yeh, E.-C.; Killilea, A.N.; Anwar, M.; Niknejad, A.M. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies. Lab Chip 2018, 18, 2065–2076. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, G.A.; Hladio, A.N.; Thomson, D.J.; Bridges, G.E.; Hedayatipoor, M.; Olson, S.; Freeman, M.R. Microfluidic electromanipulation with capacitive detection for the mechanical analysis of cells. Biomicrofluidics 2008, 2, 044102. [Google Scholar] [CrossRef] [Green Version]
- Haandbæk, N.; With, O.; Bürgel, S.C.; Heer, F.; Hierlemann, A. Resonance-enhanced microfluidic impedance cytometer for detection of single bacteria. Lab Chip 2014, 14, 3313–3324. [Google Scholar] [CrossRef]
- Yang, L.; Yamamoto, T. Quantification of Virus Particles Using Nanopore-Based Resistive-Pulse Sensing Techniques. Front. Microbiol. 2016, 7, 1500. [Google Scholar] [CrossRef] [Green Version]
- Holmes, D.; Morgan, H. Single Cell Impedance Cytometry for Identification and Counting of CD4 T-Cells in Human Blood Using Impedance Labels. Anal. Chem. 2010, 82, 1455–1461. [Google Scholar] [CrossRef]
- Pandey, A.; Gurbuz, Y.; Ozguz, V.; Niazi, J.H.; Qureshi, A. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosens. Bioelectron. 2017, 91, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Gawad, S.; Renaud, P. Microfluidic impedance spectroscopy flow cytometer: Particle size calibration. In Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, Maastricht, The Netherlands, 25–29 January 2004; pp. 343–346. [Google Scholar] [CrossRef]
- Spencer, D.; Morgan, H. High-Speed Single-Cell Dielectric Spectroscopy. ACS Sens. 2020, 5, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, D.R.; Rodriguez-Quijada, C.; Gomez-Marquez, J.; Hamad-Schifferli, K. Designing Paper-Based Immunoassays for Biomedical Applications. Sensors 2019, 19, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinn, I.; Kinnunen, P.; Albertson, T.; McNaughton, B.H.; Newton, D.W.; Burns, M.A.; Kopelman, R. Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements. Lab Chip 2011, 11, 2604–2611. [Google Scholar] [CrossRef]
- Bot, C.; Prodan, C. Probing the membrane potential of living cells by dielectric spectroscopy. Eur. Biophys. J. 2009, 38, 1049–1059. [Google Scholar] [CrossRef] [Green Version]
- White, F. Fluid Mechanics, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Segre, G.J.; Silberberg, A. Radial Particle Displacements in Poiseuille Flow of Suspensions. Nat. Cell Biol. 1961, 189, 209–210. [Google Scholar] [CrossRef]
- Di Carlo, D.; Irimia, D.; Tompkins, R.G.; Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA 2007, 104, 18892–18897. [Google Scholar] [CrossRef] [Green Version]
- Karnis, A.; Mason, S.G. Particle Motions in Sheared Suspensions. XIX. Viscoelastic Media. Trans. Soc. Rheol. 1966, 10, 571–592. [Google Scholar] [CrossRef]
- Ho, B.P.; Leal, L.G. Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 1976, 76, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.; Hsu, S. The lateral migration of solid particles in a laminar flow near a plane. Int. J. Multiph. Flow 1977, 3, 201–222. [Google Scholar] [CrossRef]
- Mutlu, B.R.; Edd, J.F.; Toner, M. Oscillatory inertial focusing in infinite microchannels. Proc. Natl. Acad. Sci. USA 2018, 115, 7682–7687. [Google Scholar] [CrossRef] [Green Version]
- Womersley, J.R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 1955, 127, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Asami, K.; Hanai, T.; Koizumi, N. Dielectric Approach to Suspensions of Ellipsoidal Particles Covered with a Shell in Particular Reference to Biological Cells. Jpn. J. Appl. Phys. 1980, 19, 359–365. [Google Scholar] [CrossRef]
- Tuca, S.-S.; Badino, G.; Gramse, G.; Brinciotti, E.; Kasper, M.; Oh, Y.J.; Zhu, R.; Rankl, C.; Hinterdorfer, P.; Kienberger, F. Calibrated complex impedance of CHO cells andE.colibacteria at GHz frequencies using scanning microwave microscopy. Nanotechnology 2016, 27, 135702. [Google Scholar] [CrossRef] [PubMed]
- Jomaa, K. Electromagnetic Near-Field Characterization & Occupational Exposure to RF Waves in Industrial Environment; Université Grenoble Alpes: Saint-Martin-d’Hères, France, 2018. [Google Scholar]
- IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. In IEEE Std C951-1991; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1992; pp. 1–76.
- Electromagnetic Biointeraction-Mechanisms, Safety Standards, Protection Guides|Giorgio Franceschetti|Springer. 2020. Available online: https://www.springer.com/gp/book/9781468457087 (accessed on 11 July 2020).
- Benarroch, J.M.; Asally, M. The Microbiologist’s Guide to Membrane Potential Dynamics. Trends Microbiol. 2020, 28, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Bot, C.T.; Prodan, C. Quantifying the membrane potential during E. coli growth stages. Biophys. Chem. 2010, 146, 133–137. [Google Scholar] [CrossRef]
- Di Biasio, A.; Ambrosone, L.; Cametti, C. The Dielectric Behavior of Nonspherical Biological Cell Suspensions: An Analytic Approach. Biophys. J. 2010, 99, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Israel, M.; Zaryabova, V.; Ivanova, M. Electromagnetic field occupational exposure: Non-thermal vs. thermal effects. Electromagn. Biol. Med. 2013, 32, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.U.; Güner, S.; Ryskin, M.; Lameck, A.S.; Benitez, A.R.; Shuali, U.; Nir, S. Effect of Microwave Radiation on Regeneration of a Granulated Micelle–Clay Complex after Adsorption of Bacteria. Appl. Sci. 2020, 10, 2530. [Google Scholar] [CrossRef] [Green Version]
- Battley, E.H.; Putnam, R.L.; Boerio-Goates, J. Heat capacity measurements from 10 to 300 K and derived thermodynamic functions of lyophilized cells of Saccharomyces cerevisiae including the absolute entropy and the entropy of formation at 298.15 K. Thermochim. Acta 1997, 298, 37–46. [Google Scholar] [CrossRef]
- Atienza, A.G. Electromagnetic Characterization of Living Microorganims. Caracterización Electromagnética de Microorganismos Vivos. 2018. Available online: https://upcommons.upc.edu/handle/2117/117762 (accessed on 2 April 2021).
- Zarrinkhat, F.; Garrido, A.; Jofre, L.; Romeu, J.; Rius, J. Electromagnetic Monitoring of Biological Microorganisms. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Pickard, W.F. Does the resting potential of Chara braunii have an electrogenic component? Can. J. Bot. 1973, 51, 715–724. [Google Scholar] [CrossRef]
- Abduljabar, A.A.; Yang, X.; Barrow, D.A.; Porch, A. Modelling and Measurements of the Microwave Dielectric Properties of Microspheres. IEEE Trans. Microw. Theory Tech. 2015, 63, 4492–4500. [Google Scholar] [CrossRef]
- Franceschetti, G.; Pinto, I. Cell Membrane Nonlinear Response to an Applied Electromagnetic Field. IEEE Trans. Microw. Theory Tech. 1984, 32, 653–658. [Google Scholar] [CrossRef]
- Lodi, M.B.; Fanari, F.; Fanti, A.; Desogus, F.; Getaneh, W.; Mazzarella, G.; Valera, P. Preliminary Study and Numerical Investigation of an Electrostatic Unit for the Removal of Fluoride from Thermal Water of Ethiopian Rift Valley. IEEE J. Multiscale Multiphys. Comput. Tech. 2020, 5, 72–82. [Google Scholar] [CrossRef]
- Berg, P.; Findlay, J. Analytical solution of the Poisson—Nernst—Planck—Stokes equations in a cylindrical channel. Proc. Math. Phys. Eng. Sci. 2011, 467, 3157–3169. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.N.; Brewer, W.T.; Williams, J.D.; Fozo, E.M.; Calhoun, T.R. Second Harmonic Generation Spectroscopy of Membrane Probe Dynamics in Gram-Positive Bacteria. Biophys. J. 2019, 117, 1419–1428. [Google Scholar] [CrossRef]
- Nemet, B.A.; Nikolenko, V.; Yuste, R. Second harmonic imaging of membrane potential of neurons with retinal. J. Biomed. Opt. 2004, 9, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Shneider, M.N.; Pekker, M. Non-thermal mechanism of weak microwave fields influence on neurons. J. Appl. Phys. 2013, 114, 104701. [Google Scholar] [CrossRef] [Green Version]
- Steinlechner, F.; Gilaberte, M.; Jofre, M.; Scheidl, T.; Torres, J.P.; Pruneri, V.; Ursin, R. Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO_4. J. Opt. Soc. Am. B 2014, 31, 2068–2076. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jofre, M.; Jofre, L.; Jofre-Roca, L. On the Wireless Microwave Sensing of Bacterial Membrane Potential in Microfluidic-Actuated Platforms. Sensors 2021, 21, 3420. https://doi.org/10.3390/s21103420
Jofre M, Jofre L, Jofre-Roca L. On the Wireless Microwave Sensing of Bacterial Membrane Potential in Microfluidic-Actuated Platforms. Sensors. 2021; 21(10):3420. https://doi.org/10.3390/s21103420
Chicago/Turabian StyleJofre, Marc, Lluís Jofre, and Luis Jofre-Roca. 2021. "On the Wireless Microwave Sensing of Bacterial Membrane Potential in Microfluidic-Actuated Platforms" Sensors 21, no. 10: 3420. https://doi.org/10.3390/s21103420
APA StyleJofre, M., Jofre, L., & Jofre-Roca, L. (2021). On the Wireless Microwave Sensing of Bacterial Membrane Potential in Microfluidic-Actuated Platforms. Sensors, 21(10), 3420. https://doi.org/10.3390/s21103420