EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing
<p>EM spectrum showing the radio frequency, millimeter wave, microwave, terahertz, infrared and visible band ranges [<a href="#B3-sensors-19-01013" class="html-bibr">3</a>].</p> "> Figure 2
<p>Application of electric field to a dielectric, such as biomatter, leads to different types of polarization mechanisms: ionic, interfacial dipolar, atomic and electronic polarizations.</p> "> Figure 3
<p>(<b>a</b>) The behavior observed when an alternating field of increasing frequency is applied to a dielectric. Relaxation phenomenon is observed as a drop in real part of permittivity whereas resonance is observed as a trough and peak in succession. Both resonance and relaxation phenomenon cause loss in electromagnetic energy. (<b>b</b>) The order of polarization and relaxation mechanisms observed when an alternating electric field of increasing frequency is applied to biological matter. Ionic diffusion is observed first, followed by interfacial and dipolar relaxations, followed by atomic and electronic resonances.</p> "> Figure 4
<p>(<b>a</b>) Broadband detection of glucose concentration by observing permittivity over a wide frequency range [<a href="#B15-sensors-19-01013" class="html-bibr">15</a>]. (<b>b</b>) Narrowband detection of glucose concentration using resonator-based capacitive sensing and observing change in reflection coefficient magnitude and resonance frequency [<a href="#B16-sensors-19-01013" class="html-bibr">16</a>].</p> "> Figure 5
<p>The equivalent circuit model of a single cell in suspension [<a href="#B17-sensors-19-01013" class="html-bibr">17</a>].</p> "> Figure 6
<p>(<b>a</b>) Variation of conductivity of dielectric on application of electric field of increasing frequency. (<b>b</b>) Dielectric properties of liver of calf showing dispersion at ~1 MHz, reproduced from [<a href="#B18-sensors-19-01013" class="html-bibr">18</a>] by permission of IOP Publishing.</p> "> Figure 7
<p>Variations observed in permittivity with change in membrane potential, membrane thickness, concentration and mobility of cells [<a href="#B20-sensors-19-01013" class="html-bibr">20</a>].</p> "> Figure 8
<p>POCT device for home-based sensing such as diabetes, tuberculosis, HIV etc.</p> "> Figure 9
<p>Classification of biosensors based on in vivo and ex vivo interaction modality of EM waves with biomatter.</p> "> Figure 10
<p>Biorecognition process on the surface of sensors. Bioreceptors are immobilized on sensor surface. On passage of analyte, interaction between target and bioreceptor causes permittivity change which is sensed.</p> "> Figure 11
<p>(<b>a</b>) Near field sensing using planar resonator. The resonator is part of the voltage controlled oscillator which is placed inside phase locked loop (PLL). The periodically moving chest is sensed through proximity coupling by the resonator and is transduced to a varying dc voltage in the PLL. (<b>b</b>) The time-varying chest movement is modelled as a varying capacitor <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>v</mi> </msub> </mrow> </semantics></math> and the resonator as a parallel RLC circuit.</p> "> Figure 12
<p>(<b>a</b>) Split ring resonator structure with integrated antennas on dielectric substrate. (<b>b</b>) Process of affinity binding of heparin to immobilized FGF-2 bioreceptor on split ring resonator surface. Reproduced from [<a href="#B7-sensors-19-01013" class="html-bibr">7</a>], with the permission of AIP Publishing.</p> "> Figure 13
<p><math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </semantics></math> (<b>b</b>) parameter response of split ring resonator before and after affinity binding. The black curve is the intrinsic response of the resonance, on immobilization of FGF-2, the resonance shifts towards left (purple curve). On increasing the concentration of analyte (red curve) the resonance frequency shifts more and more towards lower frequencies, attributed to the increase in effective capacitance of resonator. Reproduced from Ref. [<a href="#B7-sensors-19-01013" class="html-bibr">7</a>], with the permission of AIP Publishing.</p> "> Figure 14
<p>Examples of microchannels (<b>a</b>) Hairpin resonator having microchannels for passing analyte, reproduced from Ref. [<a href="#B8-sensors-19-01013" class="html-bibr">8</a>] with permission from Elsevier. (<b>b</b>) Substrate integrated waveguide (SIW) cavity resonator using microfluidic well [<a href="#B36-sensors-19-01013" class="html-bibr">36</a>].</p> "> Figure 15
<p>(<b>a</b>) Microstrip open stub. (<b>b</b>) Microstrip shunt stub microstrip structures used for sensing.</p> "> Figure 16
<p>(<b>a</b>) Equivalent RC model of cancer cells. (<b>b</b>) Equivalent RLC model of CPW transmission line and cancer cells. (<b>c</b>) Broadband characterization of different cancer cells (HepG2, A549, HEC-1-A) over 1–40 GHz. Reproduced from [<a href="#B34-sensors-19-01013" class="html-bibr">34</a>] with permission from IEEE.</p> "> Figure 17
<p>(<b>a</b>) Interdigitated capacitor (IDC) structure. (<b>b</b>) IDC sensing modality, bioreceptors are immobilized on the inner surface of IDT to capture target analyte. However, due to presense of fringing field, it is sensitive to bulk solution. (<b>c</b>) Interdigitated capacitor is embedded in oscillator circuit, such that the oscillation frequency is a function of permittivity of the material under test (MUT) passing through it. The oscillator is embedded in phase locked loop, whose voltage at the output of the charge pump is a function of permittivity.</p> "> Figure 18
<p>(<b>a</b>) Antibodies (anti-IgG) are immobilized on nitrocellulose membrane and bind to target (IgG). (<b>b</b>) Silver enhancement process is done on the complex antigen-antibody sandwich which self assembles a chain of micromonopole antennas. As the size of the silver-enhanced particles grow, the chain of microantenna segments bridges the gap between the split antenna which reflect the impinging RF signals at a desired frequency [<a href="#B71-sensors-19-01013" class="html-bibr">71</a>].</p> "> Figure 19
<p>Components of PPG signal: the a.c. component due to arterial blood flow and the d.c. components by other tissues, bone and skin. Reproduced from Ref. [<a href="#B91-sensors-19-01013" class="html-bibr">91</a>] with permission from IEEE.</p> "> Figure 20
<p>(<b>a</b>) The interaction modality of bioreceptor immobilized QD with target, on application of visible light leading to emission of certain wavelength dependent on the physical properties of QD [<a href="#B86-sensors-19-01013" class="html-bibr">86</a>]. (<b>b</b>) QD sensing maltose concentration. (<b>c</b>) Effect on photoluminescence of QD with increase in maltose concentration [<a href="#B86-sensors-19-01013" class="html-bibr">86</a>].</p> "> Figure 21
<p>(<b>a</b>) Sensing modality using photonic crystal. On being excited, a particular wavelength couples to the photonic crystal leading to formation of surface waves, seen as a dip in reflection spectrum. (<b>b</b>) After capturing the analyte, the permittivity changes and a different wavelength couples to form surface waves. (<b>c</b>) Change in coupling wavelength of photonic crystal before and after analyte capture [<a href="#B87-sensors-19-01013" class="html-bibr">87</a>].</p> "> Figure 22
<p>Interferometer combining sensing and reference beams to form an interference pattern used for detecting permittivity change. Reproduced from Ref. [<a href="#B88-sensors-19-01013" class="html-bibr">88</a>] with permission from Springer Nature.</p> "> Figure 23
<p>(<b>a</b>) SPR phenomenon–incident light is directed on a glass prism coated with thin gold layer. A part of the reflected light is transformed to evanescent wave which transfers energy to surface plasmons. At certain angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math> the momentum of the incident light matches the momentum of the surface plasmons and SPR occurs, seen as a dip in intensity of reflected light at a specific angle of reflection. (<b>b</b>) The reflected angle changes from I to II on reaction of analyte with ligand. The changes in reflected angle are plotted in sensogram in RU [<a href="#B116-sensors-19-01013" class="html-bibr">116</a>].</p> "> Figure 24
<p>(<b>a</b>) Propagating SPR (PSPR) propagates along the metal dilectric interface. (<b>b</b>) Local SPR (LSPR) is non-propagating and occurs on metallic nanoparticles.</p> "> Figure 25
<p>Local surface plasmon resonance phenomenon occurring due to surface plasmons of metallic nanostructures. The wavelength which is responsible for this phenomenon is seen as a peak in absorption spectrum.</p> "> Figure 26
<p>(<b>a</b>) Detection of cancer protein through anti-EGFR antibody conjugated SERS nanotag. (<b>b</b>) SERS spectra of pure anti-EGFR antibody conjugated SERS nanotag (green) and after reaction with cancer protein (blue). Reproduced from Ref. [<a href="#B124-sensors-19-01013" class="html-bibr">124</a>] with permission from Elsevier.</p> "> Figure 27
<p>EM waves are incident on the top and bottom AAO layer and sample solution is passed from the inlet. The reflected signal from the AAO layer is processed to trace the changes in permittivity which are reflected in the interferometric reflectance spectrum [<a href="#B132-sensors-19-01013" class="html-bibr">132</a>].</p> ">
Abstract
:1. Introduction
1.1. Dielectric Properties and Polarization
1.2. Permittivity
1.3. Debye Equations
1.4. Polarization in Tissues
2. Electrical Model of Cell in Suspension and Choice of Frequency for a Particular Application
3. Commercial Medical Biosensors
4. Radio Frequency, Microwave, Millimeter Wave and Terahertz Biosensors
4.1. In Vivo EM Wave Interaction Modalities with Biomatter
4.1.1. Doppler Radar
4.1.2. Ultra Wide Band Radar
4.1.3. Microwave Imaging
4.1.4. Proximity Sensors for Vital Sign Detection
4.1.5. Wave Spectroscopy
4.2. Ex Vivo EM Wave Interaction Modalities with Biomatter
4.2.1. Resonator Based Capacitive Sensing Using Affinity Binding
4.2.2. Resonator Based Capacitive Sensing Using Microfluidic Channels
4.2.3. Microstrip Structure Based Capacitive Sensing-Coplanar Waveguide Transmission Lines, Open Stub & Shunt Stub
4.2.4. Interdigitated Electrodes Based Capacitive Sensing
4.2.5. Radio-Frequency Indentification (RFID)-Based Biosensor
4.3. Terahertz Biosensors
4.4. Discussions
5. Optical Biosensors
5.1. In Vivo EM-Wave Interaction Modalities with Biomatter
5.1.1. Backscattering for Applications Like Photoplethysmography
5.1.2. Laser Doppler Blood Flowmetry
5.1.3. Optical Spectroscopy
5.2. Ex Vivo EM-Wave Interaction Modalities with Biomatter
5.2.1. Quantum Dots
5.2.2. Photonic Crystals (PCs)
5.2.3. Interferometry
5.2.4. Surface Plasmon Resonance
5.2.5. Surface Enhanced Raman Scattering
5.2.6. Reflectometric Interference
5.2.7. Fluorescence
5.2.8. Ellipsometry
5.3. Discussions
6. Characteristics and Safety Aspects of EM Waves
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turner, A.P.F.; Karube, I.; Wilson, G.S. Biosensors: Fundamentals and Applications; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Johnson, C.C.; Guy, A.W. Nonionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 1972, 60, 692–718. [Google Scholar] [CrossRef]
- IEEE Standard Letter Designations for Radar-Frequency Bands; IEEE: New York, NY, USA, 1984.
- Meredith, R.J. Engineers’ Handbook of Industrial Microwave Heating; The Institution of Engineering and Technology: Stevenage, UK, 1999. [Google Scholar]
- Kasap, S.O. Principle of Electronic Materials and Devices, 3rd ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Greenebaum, B.; Barnes, F. Bioengineering and Biophysical Aspects of Electromagnetic Fields, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Torun, H.; Cagri Top, F.; Dundar, G.; Yalcinkaya, A.D. An antenna-coupled split-ring resonator for biosensing. J. Appl. Phys. 2014, 116, 124701. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-F.; Wang, M.-H.; Jang, L.-S. Microfluidics-based hairpin resonator biosensor for biological cell detection. Sens. Actuators B Chem. 2018, 263, 129–136. [Google Scholar] [CrossRef]
- Artis, F.; Chen, T.; Chretiennot, T.; Fournie, J.-J.; Poupot, M.; Dubuc, D.; Grenier, K. Microwaving Biological Cells: Intracellular Analysis with Microwave Dielectric Spectroscopy. IEEE Microw. Mag. 2015, 16, 87–96. [Google Scholar] [CrossRef]
- Micheli, D.; Pastore, R.; Vricella, A.; Delfini, A.; Marchetti, M.; Santoni, F. Electromagnetic Characterization of Materials by Vector Network Analyzer Experimental Setup. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 195–236. ISBN 978-0-323-46140-5. [Google Scholar]
- Chen, Y.-F.; Wu, H.-W.; Hong, Y.-H.; Lee, H.-Y. 40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization. Biosens. Bioelectron. 2014, 61, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Dubuc, D.; Poupot, M.; Fournie, J.-J.; Grenier, K. Broadband discrimination of living and dead lymphoma cells with a microwave interdigitated capacitor. In Proceedings of the 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Austin, TX, USA, 20–23 January 2013; pp. 64–66. [Google Scholar]
- Wang, L. Microwave Sensors for Breast Cancer Detection. Sensors 2018, 18, 655. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Jamal, F.I.; Wenger, C. A Review on Passive and Integrated Near-Field Microwave Biosensors. Biosensors 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Kim, C.-S.; Choi, B.-C.; Ham, K.-Y. The correlation of the complex dielectric constant and blood glucose at low frequency. Biosens. Bioelectron. 2003, 19, 321–324. [Google Scholar] [CrossRef]
- Kim, S.; Melikyan, H.; Kim, J.; Babajanyan, A.; Lee, J.-H.; Enkhtur, L.; Friedman, B.; Lee, K. Noninvasive in vitro measurement of pig-blood d-glucose by using a microwave cavity sensor. Diabetes Res. Clin. Pract. 2012, 96, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Green, N.G.; Morgan, H. Analytical and numerical modeling methods for impedance analysis of single cells on-chip. Nano 2008, 3, 55–63. [Google Scholar] [CrossRef]
- Smith, S.R.; Foster, K.R. Dielectric properties of low-water-content tissues. Phys. Med. Biol. 1985, 30, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.; Pettigrew, D.; Reccius, C.H.; Gwyer, J.D.; van Berkel, C.; Holloway, J.; Davies, D.E.; Morgan, H. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 2009, 9, 2881. [Google Scholar] [CrossRef] [PubMed]
- Prodan, E.; Prodan, C.; Miller, J.H. The Dielectric Response of Spherical Live Cells in Suspension: An Analytic Solution. Biophys. J. 2008, 95, 4174–4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camli, B.; Kusakci, E.; Lafci, B.; Salman, S.; Torun, H.; Yalcinkaya, A.D. Cost-Effective, Microstrip Antenna Driven Ring Resonator Microwave Biosensor for Biospecific Detection of Glucose. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 404–409. [Google Scholar] [CrossRef]
- Schäfer, M.; Kirlum, H.J.; Schlegel, C.; Gebhard, M.M. Dielectric properties of skeletal muscle during ischemia in the frequency range from 50 Hz to 200 MHz. Ann. N. Y. Acad. Sci. 1999, 873, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 2006, 102, 29–45. [Google Scholar] [CrossRef]
- Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: A commercial perspective. Biosens. Bioelectron. 2005, 20, 2435–2453. [Google Scholar] [CrossRef] [PubMed]
- Baird, C.L.; Myszka, D.G. Current and emerging commercial optical biosensors. J. Mol. Recognit. 2001, 14, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 2015, 478, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Naylon, J.; Luzio, S.; Beutler, J.; Birchall, J.; Martin, C.; Porch, A. Design and In Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor. IEEE Trans. Microw. Theory Tech. 2015, 63, 3016–3025. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Luzio, S.; Beutler, J.; Porch, A. Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 876–879. [Google Scholar]
- Baryeh, K.; Takalkar, S.; Lund, M.; Liu, G. Introduction to medical biosensors for point of care applications. In Medical Biosensors for Point of Care (POC) Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–25. ISBN 978-0-08-100072-4. [Google Scholar]
- Kim, N.-Y.; Adhikari, K.K.; Dhakal, R.; Chuluunbaatar, Z.; Wang, C.; Kim, E.-S. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip. Sci. Rep. 2015, 5, 7807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.Y.; Dhakal, R.; Adhikari, K.K.; Kim, E.S.; Wang, C. A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level. Biosens. Bioelectron. 2015, 67, 687–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, G.; Maity, S.; Chatterjee, B.; Sen, S. A wearbale real-time CMOS dosimeter with integrated zero-bias floating gate sensor and an 861nW 18-bit energy-resolution scalable time-based radiation to digital converter. In Proceedings of the Custom Integrated Circuits Conference, Austin, TX, USA, 14–17 April 2019. [Google Scholar]
- Cao, N.; Nasir, S.B.; Sen, S.; Raychowdhury, A. Self-Optimizing IoT Wireless Video Sensor Node with In-Situ Data Analytics and Context-Driven Energy-Aware Real-Time Adaptation. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2470–2480. [Google Scholar] [CrossRef]
- Wu, H.-W. Label-Free and Antibody-Free Wideband Microwave Biosensor for Identifying the Cancer Cells. IEEE Trans. Microw. Theory Tech. 2016, 64, 982–990. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Recent advances in the metamaterial-inspired biosensors. Biosens. Bioelectron. 2018, 117, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Kim, S.-H.; Park, J.Y.; Lim, S. Microfluidic Biosensor Based on Microwave Substrate-Integrated Waveguide Cavity Resonator. J. Sens. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Li, C.; Yu, X.; Lee, C.-M.; Li, D.; Ran, L.; Lin, J. High-Sensitivity Software-Configurable 5.8-GHz Radar Sensor Receiver Chip in 0.13 μm CMOS for Noncontact Vital Sign Detection. IEEE Trans. Microw. Theory Tech. 2010, 58, 1410–1419. [Google Scholar]
- Huang, J.-K.; Tseng, C.-H. A 5.8-GHz radar sensor chip in 0.18-μm CMOS for non-contact vital sign detection. In Proceedings of the 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 24–26 August 2016; pp. 1–3. [Google Scholar]
- Yan, Y.; Li, C.; Lin, J. Effects of I/Q mismatch on measurement of periodic movement using a Doppler radar sensor. In Proceedings of the 2010 IEEE Radio and Wireless Symposium (RWS), New Orleans, LA, USA, 10–14 January 2010; pp. 196–199. [Google Scholar]
- Droitcour, A.D.; Boric-Lubecke, O.; Lubecke, V.M.; Lin, J.; Kovacs, G.T.A. Range Correlation and I/Q Performance Benefits in Single-Chip 1060 Silicon Doppler Radars for Noncontact Cardiopulmonary Monitoring. IEEE Trans. Microw. Theory Tech. 2004, 52, 838–848. [Google Scholar] [CrossRef]
- Fletcher, R.; Han, J. Low-cost differential front-end for Doppler radar vital sign monitoring. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 1325–1328. [Google Scholar]
- Wang, F.-K.; Horng, T.-S.; Peng, K.-C.; Jau, J.-K.; Li, J.-Y.; Chen, C.-C. Mutual Injection-Locked SIL Sensor Array for Vital Sign Detection with Random Body Movement Cancellation. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011. [Google Scholar]
- Singh, A.; Lubecke, V. A Heterodyne Receiver for Harmonic Doppler Radar Cardio- pulmonary Monitoring with Body-worn Passive RF Tags. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010. [Google Scholar]
- Wang, F.-K.; Li, C.-J.; Hsiao, C.-H.; Horng, T.-S.; Lin, J.; Peng, K.-C.; Jau, J.-K.; Li, J.-Y.; Chen, C.-C. A Novel Vital-Sign Sensor Based on a Self-Injection-Locked Oscillator. IEEE Trans. Microw. Theory Tech. 2010, 58, 4112–4120. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Lin, J.; Boric-Lubecke, O.; Lubecke, M. Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the ka-band. IEEE Trans. Microw. Theory Tech. 2006, 54, 2023–2032. [Google Scholar] [CrossRef]
- Karli, R.; Ammor, H.; Virdee, B.S. Early detection of breast tumors using UWB microstrip antenna imaging. Microw. Opt. Technol. Lett. 2016, 58, 2101–2106. [Google Scholar] [CrossRef]
- Solis Nepote, M.; Rodriguez Herrera, D.; Tapia, D.F.; Latif, S.; Pistorius, S. A comparison study between horn and vivaldi antennas for 1.5–6 GHz breast microwave radar imaging. In Proceedings of the The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 59–62. [Google Scholar]
- Kahar, M.; Ray, A.; Sarkar, D.; Sarkar, P.P. An UWB microstrip monopole antenna for breast tumor detection. Microw. Opt. Technol. Lett. 2015, 57, 49–54. [Google Scholar] [CrossRef]
- Ting, J.; Oloumi, D.; Rambabu, K. A miniaturized broadband bow-tie antenna with improved cross-polarization performance. AEU Int. J. Electron. Commun. 2017, 78, 173–180. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, S.-G.; Kim, B.-H.; Ha, S.-J.; Lee, H.-J.; Yun, G.-H.; Yook, J.-G. Noncontact Proximity Vital Sign Sensor Based on PLL for Sensitivity Enhancement. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Kim, S.-G.; Kim, B.-H.; Lee, H.-J.; Yun, G.-H.; Yook, J.-G. Advanced Non-Contact Near-Field Proximity Vital Sign Sensor Using Phase Locked Loop. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013. [Google Scholar]
- An, Y.-J.; Kim, B.-H.; Yun, G.-H.; Kim, S.-W.; Hong, S.-B.; Yook, J.-G. Flexible Non-Constrained RF Wrist Pulse Detection Sensor Based on Array Resonators. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 300–308. [Google Scholar] [CrossRef] [PubMed]
- An, Y.-J.; Yun, G.-H.; Kim, S.W.; Yook, J.-G. Wrist Pulse Detection System Based on Changes in the Near-Field Reflection Coefficient of a Resonator. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 719–721. [Google Scholar] [CrossRef]
- Kim, B.-H.; Hong, Y.; An, Y.-J.; Kim, S.-G.; Lee, H.-J.; Kim, S.-W.; Hong, S.-B.; Yun, G.-H.; Yook, J.-G. A Proximity Coupling RF Sensor for Wrist Pulse Detection Based on Injection-Locked PLL. IEEE Trans. Microw. Theory Tech. 2016, 64, 1667–1676. [Google Scholar] [CrossRef]
- Kim, S.-G.; Yun, G.-H.; Yook, J.-G. Compact Vital Signal Sensor Using Oscillation Frequency Deviation. IEEE Trans. Microw. Theory Tech. 2012, 60, 393–400. [Google Scholar] [CrossRef]
- Saha, S.; Cano-Garcia, H.; Sotiriou, I.; Lipscombe, O.; Gouzouasis, I.; Koutsoupidou, M.; Palikaras, G.; Mackenzie, R.; Reeve, T.; Kosmas, P.; et al. A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves using Micro strip Patch Antennas. Sci. Rep. 2017, 7, 6855. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Lee, J.-H.; Moon, H.-S.; Jang, I.-S.; Choi, J.-S.; Yook, J.-G.; Jung, H.-I. A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules. Sens. Actuators B Chem. 2012, 169, 26–31. [Google Scholar] [CrossRef]
- Lee, H.-J.; Lee, H.-S.; Yoo, K.-H.; Yook, J.-G. DNA sensing using split-ring resonator alone at microwave regime. J. Appl. Phys. 2010, 108, 014908. [Google Scholar] [CrossRef]
- Lee, H.-J.; Yook, J.-G. Biosensing using split-ring resonators at microwave regime. Appl. Phys. Lett. 2008, 92, 254103. [Google Scholar] [CrossRef]
- Shaforost, E.N.; Klein, N.; Gubin, A.I.; Barannik, A.A.; Klushin, A.M. Microwave-millimetre wave WGM resonators for evanescent sensing 1070 of nanolitre liquid substances. In Proceedings of the European Microwave Conference (EuMC), Rome, Italy, 29 September–1 October 2009; pp. 45–48. [Google Scholar]
- Shaforost, E.N.; Klein, N.; Vitusevich, S.A.; Offenhäusser, A.; Barannik, A.A. Nanoliter liquid characterization by open whispering-gallery mode dielectric resonators at millimeter wave frequencies. J. Appl. Phys. 2008, 104, 074111. [Google Scholar] [CrossRef]
- Jamal, F.I.; Guha, S.; Eissa, M.H.; Borngraber, J.; Meliani, C.; Ng, H.J.; Kissinger, D.; Wessel, J. Low-Power Miniature K-Band Sensors for Dielectric Characterization of Biomaterials. IEEE Trans. Microw. Theory Tech. 2017, 65, 1012–1023. [Google Scholar] [CrossRef]
- Jamal, F.I.; Guha, S.; Eissa, M.H.; Vehring, S.; Kissinger, D.; Meliani, C. K-Band BiCMOS based near-field biomedical dielectric sensor for Detection of fat and calcium in blood. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 821–824. [Google Scholar]
- Yang, C.-H.; Kuo, L.-S.; Chen, P.-H.; Yang, C.-R.; Tsai, Z.-M. Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles. Biosens. Bioelectron. 2012, 31, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Grenier, K.; Dubuc, D.; Poleni, P.-E.; Kumemura, M.; Toshiyoshi, H.; Fujii, T.; Fujita, H. Integrated Broadband Microwave and Microfluidic Sensor Dedicated to Bioengineering. IEEE Trans. Microw. Theory Tech. 2009, 57, 3246–3253. [Google Scholar] [CrossRef]
- Li, L.; Uttamchandani, D. A Microwave Dielectric Biosensor Based on Suspended Distributed MEMS Transmission Lines. IEEE Sens. J. 2009, 9, 1825–1830. [Google Scholar] [CrossRef] [Green Version]
- Nehring, J.; Bartels, M.; Weigel, R.; Kissinger, D. A permittivity sensitive PLL based on a silicon-integrated capacitive sensorfor microwave biosensing applications. In Proceedings of the 2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), San Diego, CA, USA, 25–28 January 2015. [Google Scholar]
- Helmy, A.A.; Jeon, H.-J.; Lo, Y.-C.; Larsson, A.J.; Kulkarni, R.; Kim, J.; Silva-Martinez, J.; Entesari, K. A Self-Sustained CMOS Microwave Chemical Sensor Using a Frequency Synthesizer. IEEE J. Solid-State Circuits 2012, 47, 2467–2483. [Google Scholar] [CrossRef]
- Guha, S.; Schmalz, K.; Wenger, C.; Herzel, F. Self-calibrating highly sensitive dynamic capacitance sensor: Towards rapid sensing and counting of particles in laminar flow systems. Analyst 2015, 140, 3262–3272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Bounaix Morand du Puch, C.; Dalmay, C.; Lacroix, A.; Landoulsi, A.; Leroy, J.; Mélin, C.; Lalloué, F.; Battu, S.; Lautrette, C.; et al. Discrimination of colorectal cancer cell lines using microwave biosensors. Sens. Actuators A Phys. 2014, 216, 405–416. [Google Scholar] [CrossRef]
- Yuan, M.; Alocilja, E.C.; Chakrabartty, S. A Novel Biosensor Based on Silver-Enhanced Self-Assembled Radio-Frequency Antennas. IEEE Sens. J. 2014, 14, 941–942. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Chen, H. A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage. Sci. Rep. 2017, 7, 16378. [Google Scholar] [CrossRef] [PubMed]
- Haring Bolívar, P.; Nagel, M.; Richter, F.; Brucherseifer, M.; Kurz, H.; Bosserhoff, A.; Büttner, R. Label–free THz sensing of genetic sequences: Towards ‘THz biochips’. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Xia, L.; Wei, D.; Cui, H.-L.; Du, C. Terahertz biosensing of protein based on a metamaterial. In Proceedings of the 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Chongqing, China, 18–22 July 2016; pp. 327–330. [Google Scholar]
- Nagel, M.; Haring Bolivar, P.; Brucherseifer, M.; Kurz, H.; Bosserhoff, A.; Büttner, R. Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization. Appl. Opt. 2002, 41, 2074. [Google Scholar] [CrossRef] [PubMed]
- Zarifi, M.H. Sensitivity and Selectivity Enhancement in Coupling Ring Resonator Sensors Using Splitting Resonant Frequencies. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 36–39. [Google Scholar]
- Berggren, C.; Bjarnason, B.; Johansson, G. Capacitive Biosensors. Electroanalysis 2001, 13, 173–180. [Google Scholar] [CrossRef]
- Rowe, D.J.; al-Malki, S.; Abduljabar, A.A.; Porch, A.; Barrow, D.A.; Allender, C.J. Improved Split-Ring Resonator for Microfluidic Sensing. IEEE Trans. Microw. Theory Tech. 2014, 62, 689–699. [Google Scholar] [CrossRef] [Green Version]
- Rowe, D.J.; Porch, A.; Barrow, D.A.; Allender, C.J. Novel Coupling Structure for the Resonant Coaxial Probe. IEEE Trans. Microw. Theory Tech. 2012, 60, 1699–1708. [Google Scholar] [CrossRef]
- Wang, F.-K.; Horng, T.-S.; Peng, K.-C.; Jau, J.-K.; Li, J.-Y.; Chen, C.-C. Single-Antenna Doppler Radars Using Self and Mutual Injection Locking for Vital Sign Detection with Random Body Movement Cancellation. IEEE Trans. Microw. Theory Tech. 2011, 59, 3577–3587. [Google Scholar] [CrossRef]
- Wu, P.-H.; Jau, J.-K.; Li, C.-J.; Horng, T.-S.; Hsu, P. Vital-sign detection Doppler radar based on phase locked self- injection oscillator. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Burg, T.P.; Manalis, S.R. Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 2003, 83, 2698–2700. [Google Scholar] [CrossRef]
- Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, H.V. Metamaterial-based wireless strain sensors. Appl. Phys. Lett. 2009, 95, 011106. [Google Scholar] [CrossRef] [Green Version]
- Myers, F.B.; Lee, L.P. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 2008, 8, 2015. [Google Scholar] [CrossRef] [PubMed]
- Ligler, F.S.; Sapsford, K.E.; Golden, J.P.; Shriver-Lake, L.C.; Taitt, C.R.; Dyer, M.A.; Barone, S.; Myatt, C.J. The Array Biosensor: Portable, Automated Systems. Anal. Sci. 2007, 23, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapsford, K.; Pons, T.; Medintz, I.; Mattoussi, H. Biosensing with Luminescent Semiconductor Quantum Dots. Sensors 2006, 6, 925–953. [Google Scholar] [CrossRef] [Green Version]
- Farmer, A.; Friedli, A.C.; Wright, S.M.; Robertson, W.M. Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sens. Actuators B Chem. 2012, 173, 79–84. [Google Scholar] [CrossRef]
- Xu, J.; Suarez, D.; Gottfried, D.S. Detection of avian influenza virus using an interferometric biosensor. Anal. Bioanal. Chem. 2007, 389, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Kerman, K.; Nagatani, N.; Hiepa, H.M.; Kim, D.-K.; Yonezawa, Y.; Nakano, K.; Tamiya, E. Multiple Label-Free Detection of Antigen−Antibody Reaction Using Localized Surface Plasmon Resonance-Based Core−Shell Structured Nanoparticle Layer Nanochip. Anal. Chem. 2006, 78, 6465–6475. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, R.; Nourani, M.; Ostadabbas, S.; Panahi, I. A Motion-Tolerant Adaptive Algorithm for Wearable Photoplethysmographic Biosensors. IEEE J. Biomed. Health Inform. 2014, 18, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Biran, I.; Rissin, D.M.; Ron, E.Z.; Walt, D.R. Optical imaging fiber-based live bacterial cell array biosensor. Anal. Biochem. 2003, 315, 106–113. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Velasco-Garcia, M.N. Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin. Cell Dev. Biol. 2009, 20, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayadevappa, B.M.; Holi, M.S. Photoplethysmography: Design, Development, Analysis and Applications in Clinical and Physiological Measurement—A Review. Int. J. Innov. Res. Sci. Eng. Technol. 2007, 5, 13. [Google Scholar]
- Ghamari, M. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar] [CrossRef]
- Nogawa, M.; Kaiwa, T.; Takatani, S. A novel hybrid reflectance pulse oximeter sensor with improved linearity and general applicability to various portions of the body. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering towards the Year 2000 and Beyond (Cat. No.98CH36286), Hong Kong, China, 1 November 1998; pp. 1858–1861. [Google Scholar]
- Sinchai, S.; Kainan, P.; Wardkein, P.; Koseeyaporn, J. A Photoplethysmographic Signal Isolated from an Additive Motion Artifact by Frequency Translation. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 904–917. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.; Johansson, A.; Kalman, S. Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. J. Clin. Monit. Comput. 2000, 16, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Oates, C.P.; Lees, T.A.; Murray, A. Photoplethysmography detection of lower limb peripheral arterial occlusive disease: A comparison of pulse timing, amplitude and shape characteristics. Physiol. Meas. 2005, 26, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Kawada, T.; Katsumata, M.; Ibuki, C. Utility of Second Derivative of the Finger Photoplethysmogram for the Estimation of the Risk of Coronary Heart Disease in the General Population. Circ. J. 2006, 70, 304–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, K.; Fukutake, T.; Hattori, T. Fingertip photoplethysmography and migraine. J. Neurol. Sci. 2003, 216, 17–21. [Google Scholar] [CrossRef]
- Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Goma, M.; Kaneshige, M.; Ichijo, S.; Ichijo, M.; Shindo, H.; Terada, N.; Yokomichi, H.; Yamagata, Z.; Kitamura, K.; Shimura, H.; et al. Sensitive detection of hemodynamic failure during orthostatic stress in patients with diabetic polyneuropathy using a mini laser Doppler blood flowmeter. J. Am. Soc. Hypertens. 2017, 11, 28–37.e2. [Google Scholar] [CrossRef] [PubMed]
- Predicting the Future of Telepathy with Openwater. Available online: http://www.neumo.jp/2017/11/17/blog-predicting-the-future-of-telepathy-with-openwater/ (accessed on 27 February 2019).
- Mattoussi, H.; Mauro, J.M.; Goldman, E.R.; Anderson, G.P.; Sundar, V.C.; Mikulec, F.V.; Bawendi, M.G. Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc. 2000, 122, 12142–12150. [Google Scholar] [CrossRef]
- Rowland, C.E.; Susumu, K.; Stewart, M.H.; Oh, E.; Mäkinen, A.J.; O’Shaughnessy, T.J.; Kushto, G.; Wolak, M.A.; Erickson, J.S.; Efros, A.L.; et al. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights into the Design of Robust Voltage-Sensitive Cellular Imaging Probes. Nano Lett. 2015, 15, 6848–6854. [Google Scholar] [CrossRef] [PubMed]
- Medintz, I.L.; Konnert, J.H.; Clapp, A.R.; Stanish, I.; Twigg, M.E.; Mattoussi, H.; Mauro, J.M.; Deschamps, J.R. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. USA 2004, 101, 9612–9617. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-Y.; Wang, L.; Gao, F.; Yu, Z.-Y.; Wu, Z.-M. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids. Analyst 2002, 127, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Zahavy, E.; Freeman, E.; Lustig, S.; Keysary, A.; Yitzhaki, S. Double Labeling and Simultaneous Detection of B- and T Cells Using Fluorescent Nano-Crystal (q-dots) in Paraffin-Embedded Tissues. J. Fluoresc. 2005, 15, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Z.; Wang, H.-Y.; Liang, R.-Q.; Ruan, K.-C. Detection of Tumor Marker CA125 in Ovarian Carcinoma Using Quantum Dots. Acta Biochim. Biophys. Sin. 2004, 36, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colton, H.M. Visualization and Quantitation of Peroxisomes Using Fluorescent Nanocrystals: Treatment of Rats and Monkeys with Fibrates and Detection in the Liver. Toxicol. Sci. 2004, 80, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zhu, L.; Feng, H.; Ang, S.; Chau, F.S.; Liu, W.-T. Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Anal. Chim. Acta 2006, 556, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ang, S.; Liu, W.-T. Quantum Dots as a Novel Immunofluorescent Detection System for Cryptosporidium parvum and Giardia lamblia. Appl. Environ. Microbiol. 2004, 70, 597–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopsky, V.; Karakouz, T.; Alieva, E.; Vicario, C.; Sekatskii, S.; Dietler, G. Photonic Crystal Biosensor Based on Optical Surface Waves. Sensors 2013, 13, 2566–2578. [Google Scholar] [CrossRef] [PubMed]
- Pires, N.; Dong, T.; Hanke, U.; Hoivik, N. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications. Sensors 2014, 14, 15458–15479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Duan, R.; Yang, H.; Luo, X.; Xi, M. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int. J. Nanomed. 2012, 7, 2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piliarik, M.; Šípová, H.; Kvasnička, P.; Galler, N.; Krenn, J.R.; Homola, J. High-resolution biosensor based on localized surface plasmons. Opt. Express 2012, 20, 672. [Google Scholar] [CrossRef] [PubMed]
- Smolsky, J.; Kaur, S.; Hayashi, C.; Batra, S.; Krasnoslobodtsev, A. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers. Biosensors 2017, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Pimková, K.; Bocková, M.; Hegnerová, K.; Suttnar, J.; Čermák, J.; Homola, J.; Dyr, J.E. Surface plasmon resonance biosensor for the detection of VEGFR-1—A protein marker of myelodysplastic syndromes. Anal. Bioanal. Chem. 2012, 402, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Riedel, T.; Rodriguez-Emmenegger, C.; de los Santos Pereira, A.; Bědajánková, A.; Jinoch, P.; Boltovets, P.M.; Brynda, E. Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosens. Bioelectron. 2014, 55, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Kanoh, N.; Kyo, M.; Inamori, K.; Ando, A.; Asami, A.; Nakao, A.; Osada, H. SPR Imaging of Photo-Cross-Linked Small-Molecule Arrays on Gold. Anal. Chem. 2006, 78, 2226–2230. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, M.; Zhou, W.; Johnston, T.G.; Wang, R.; Zhu, J. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs. Appl. Surf. Sci. 2015, 355, 570–576. [Google Scholar] [CrossRef]
- Dinish, U.S.; Fu, C.Y.; Soh, K.S.; Ramaswamy, B.; Kumar, A.; Olivo, M. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 2012, 33, 293–298. [Google Scholar]
- Moskovits, M. Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 2005, 36, 485–496. [Google Scholar] [CrossRef]
- Andrade, G.F.S.; Fan, M.; Brolo, A.G. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens. Bioelectron. 2010, 25, 2270–2275. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Li, S.; Han, F.; Liu, L.; Xu, L.; Ma, W.; Kuang, H.; Li, A.; Wang, L.; Xu, C. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens. Bioelectron. 2015, 71, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xia, M.; Liang, O.; Sun, K.; Cipriano, A.F.; Schroeder, T.; Liu, H.; Xie, Y.-H. Label-Free SERS Selective Detection of Dopamine and Serotonin Using Graphene-Au Nanopyramid Heterostructure. Anal. Chem. 2015, 87, 10255–10261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavaleta, C.L.; Smith, B.R.; Walton, I.; Doering, W.; Davis, G.; Shojaei, B.; Natan, M.J.; Gambhir, S.S. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 13511–13516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhou, H.; Hu, Z.; Yu, G.; Yang, D.; Zhao, J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens. Bioelectron. 2017, 94, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Pröll, F.; Möhrle, B.; Kumpf, M.; Gauglitz, G. Label-free characterisation of oligonucleotide hybridisation using reflectometric interference spectroscopy. Anal. Bioanal. Chem. 2005, 382, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Kumeria, T.; Kurkuri, M.D.; Diener, K.R.; Parkinson, L.; Losic, D. Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens. Bioelectron. 2012, 35, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Arwin, H.; Poksinski, M.; Johansen, K. Total internal reflection ellipsometry: Principles and applications. Appl. Opt. 2004, 43, 3028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Jin, G. Serum tumor marker detection on PEGylated lipid membrane using biosensor based on total internal reflection imaging ellipsometry. Sens. Actuators B Chem. 2011, 159, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, M. Quantum dots and other nanoparticles: What can they offer to drug discovery? Drug Discov. Today 2004, 9, 1065–1071. [Google Scholar] [CrossRef]
- Kooyman, R.P.H.; Kolkman, H.; Van Gent, J.; Greve, J. Surface plasmon resonance immunosensors: Sensitivity considerations. Anal. Chim. Acta 1988, 213, 35–45. [Google Scholar] [CrossRef]
- Micheels, J.; Aisbjorn, B.; Sorensen, B. Laser doppler flowmetry. A new non-invasive measurement of microcirculation in intensive care? Resuscitation 1984, 12, 31–39. [Google Scholar] [CrossRef]
- Vachali, P.P.; Li, B.; Bartschi, A.; Bernstein, P.S. Surface plasmon resonance (SPR)-based biosensor technology for the quantitative characterization of protein–carotenoid interactions. Arch. Biochem. Biophys. 2015, 572, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geun, E.; Heo, H.; Nam, K.C.; Huh, Y. Measurement Site and Applied Pressure Consideration in Wrist Photoplethysmography. In Proceedings of the ITC-CSCC: International Technical Conference on Circuits Systems, Computers and Communications, Shimonoseki, Japan, 6–9 July 2008. [Google Scholar]
- Gilchrest, B.A.; Soter, N.A.; Stoff, J.S.; Mihm, M.C. The human sunburn reaction: Histologic and biochemical studies. J. Am. Acad. Dermatol. 1981, 5, 411–422. [Google Scholar] [CrossRef]
- Taylor, H.R. The Long-term Effects of Visible Light on the Eye. Arch. Ophthalmol. 1992, 110, 99. [Google Scholar] [CrossRef] [PubMed]
- Stuchly, M.A. Interaction of radiofrequency and microwave radiation with living systems: A review of mechanisms. Radiat. Environ. Biophys. 1979, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schwan, H. Alternating Current Spectroscopy of Biological Substances. Proc. IRE 1959, 47, 1841–1855. [Google Scholar] [CrossRef]
- Lin, J.C.; Su, J.-L.; Wang, Y. Microwave-induced thermoelastic pressure wave propagation in the cat brain. Bioelectromagnetics 1988, 9, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Bawin, S.M.; Kaczmarek, L.K.; Adey, W.R. Effects of modulated vhf fields on the central nervous system. Ann. N. Y. Acad. Sci. 1975, 247, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, T. Biological interactions of external-low-frequency electric and magnetic fields. Bioelectrochem. Bioenerg. 1991, 320, 1–17. [Google Scholar] [CrossRef]
- Takashima, S.; Onaral, B.; Schwan, H.P. Effects of modulated RF energy on the EEG of mammalian brains: Effects of acute and chronic irradiations. Radiat. Environ. Biophys. 1979, 16, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Vander Vorst, A.; Rosen, A.; Kotsuka, Y. RF/Microwave Interaction with Biological Tissues; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-471-73277-8. [Google Scholar]
- Bawin, S.M.; Gavalas-Medici, R.J.; Adey, W.R. Effects of modulated very high frequency fields on specific brain rhythms in cats. Brain Res. 1973, 58, 365–384. [Google Scholar] [CrossRef]
Frequency Range | What Can Be Sensed | Application |
---|---|---|
and -dispersion | Changes in cell membrane potential, Changes in cell membrane thickness, Cells with different cell shape can be distinguished | Characterizing the different types of WBCs (e.g., lymphocytes, neutrophils and monocytes) [19], distinguish dead cells from living cells [12] |
-dispersion | Intracellular properties and contents | Detection of biomolecules e.g., glucose [21], biomarkers for cancer cells [8] |
Type of Biosensor | Manufacturer | Principle | Sample Required |
---|---|---|---|
Glucose | Glucowise | Millimeter wave spectroscopy | No blood sample required |
Glucose | Bayer, Nipro Diagnostics, Prodigy Diabetes Care, Aga Matrix, Simple Diagnostics | Electrochemical-cassette and strips | Blood sample required |
Glucose | EKF Diagnostics, Maxim Integrated | Optical-reflectometry test strips | Blood sample required |
hCG pregnancy test | Sofia | Optical fluorescent test | Urine sample |
hCG pregnancy test | Alere, Coretests | Electrochemical-cassette and strips | Urine sample |
HIV | TFS biosensor fluorometers | Optical-fluorescence test | Blood sample |
HIV | CLUNGENE | Electrochemical-strips and cassettes | serum/plasma/whole blood |
Malaria | CLUNGENE, Egens Diagnostics, Access Bio, Inc., Alere | Electrochemical-strips and cassettes | Serum/plasma/whole blood |
Tuberculosis | CLUNGENE, Alere, Standard Diagnostics, Inc., United Surgical & Diagnostics | Electrochemical-strips and cassettes | Serum/plasma/whole blood |
Carcinoembryonic Antigen (CEA) Rapid Diagnostic Test | CLUNGENE, Run Bio Tech Co. Ltd. | Electrochemical-strips and cassettes | Serum/plasma/whole blood |
Prostate Specific Antigen (PSA) Rapid Diagnostic Test | CLUNGENE, Run Bio Tech Co. Ltd. | Electrochemical-strips and cassettes | Serum/plasma/whole blood |
Prostate Specific Antigen (PSA) Rapid Diagnostic Test | CLUNGENE, Run Bio Tech Co. Ltd. | Electrochemical-strips and cassettes | Serum/plasma/whole blood |
Cardiac markers- troponin | CLUNGENE | Electrochemical-strips and cassettes | Serum/plasma/whole blood |
Monitor biomolecular interactions in real time | Biacore | Optical-SPR+affinity binding | Serum/plasma/whole blood |
Monitor biomolecular interactions in real time | Affinity biosensors | Optical- evanescent waves | Serum/plasma/whole blood |
Identification of pathogens-bacteria and virus | IBIS Technologies | Optical- SPR+affinity binding | Serum/plasma/whole blood |
Heart rate | ELCAT Medical Systems, Shimmer Sensing, Gutmann MD | Optical - photoplethesmography | No sample required |
Fetal Heart rate | Laerdal | RF-doppler | No sample required |
Paper | Operating Range (Hz) | In Vivo/Ex Vivo | Label/Label Free | Direct/Indirect | Biomatter Wave Modality | Detection Modality | Application |
---|---|---|---|---|---|---|---|
[11] | 1–40 G | ex vivo | Label-free | Direct | CPW transmission | Attenuation constant and complex permittivity | Dielectric characterization of cancer cells |
[71] | 915 M | ex vivo | Label | Indirect | Effective length of antenna is increased with increase in target concentration using affinity binding | Interrogation distance | Concentration detection of rabbit IgG |
[51] | 3 G | in vivo | Label-free | Direct | Circulator resonator using near field | Oscillation frequency deviation converted to a Voltage signal by PLL | Vital sign detection |
[7] | 2 G | ex vivo | Label-free | Indirect | SRR using affinity binding | S-parameters/change in resonance frequency | Detection of heparin |
[21] | 2 G | ex vivo | Label-free | Indirect | SRR using affinity binding | S-parameters/change in resonance frequency | Detection of glucose |
[52,53] | 2.4 G | in vivo | Label-free | Direct | Array resonator using near field | S-parameters | Pulse detection |
[8] | 2 G | ex vivo | Label-free | Indirect | Hairpin resonator using microfluidic channel | S-parameters | Detection of melanoma |
[54] | 360 M | in vivo | Label-free | Direct | Planar resonator using near field | PLL transforms the frequency change to voltage variation | Vital sign detection |
[43] | 2 G | in vivo | Label-free | Direct | Harmonic Doppler radar using heterodyne Rx | Phase modulated signal | Vital sign detection/Cardiopulmonary monitoring |
[44,81] | 2.4–3 G | in vivo | Label-free | Direct | Doppler (self-injection locking VCO) | Phase modulated signal | Vital sign detection |
[41] | 2.5 G | in vivo | Label-free | Direct | Differential front end Doppler | Phase modulated signal | Vital sign detection |
[42] | 2.5 G | in vivo | Label-free | Direct | Doppler (mutual injection locking) | Phase modulated signal | Vital sign detection |
[57] | 180 M | ex vivo | Label-free | Indirect | SRR using affinity binding | S-parameter/resonant frequency shift | Biomolecular detection |
[82] | 40 k | ex vivo | Label-free | Indirect | Resonator mass sensor using affinity binding | S-parameter/resonant frequency shift | Biomolecular detection |
[83] | - | in vivo | Label-free | Direct | Strain sensor | S-parameter/resonant frequency shift | Helpful in fractured patients |
Paper | Operating Range (Hz) | In Vivo/Ex Vivo | Label/Label Free | Direct/Indirect | Biomatter Wave Modality | Detection Modality | Application |
---|---|---|---|---|---|---|---|
[37,38] | 5.8 G | in vivo | Label-free | Direct | Doppler | Phase modulated signal | Vital sign detection |
[45] | 26–40 G | in vivo | Label-free | Direct | ultra-wideband (UWB) radar | Phase modulated signal | Vital sign detection |
[69] | 12 G | ex vivo | Label-free | Indirect | Interdigital capacitance sensor using microfluidic channels | PLL Demodulator gives voltage output signal | Rapid particle counting and single particle sensing |
[16] | 5 G | ex vivo | Label-free | Indirect | Microwave cavity sensor using microfluidic channels | S-parameter/resonant frequency shift | Pig blood d-glucose |
[62] | 28 G | ex vivo | Label-free | Indirect | Microstrip based stub as capacitive sensor using microfluidic channels | Shift in oscillation frequency and output power | Malignant cell growth investigation, cell cultivation monitoring |
[36] | 13 G | ex vivo | Label-free | Indirect | Microstrip open stub as capacitive sensor using microfluidic channels | S-parameters/change in resonance frequency | Detection of Fibroblast cells |
[63] | 29 G | ex vivo | Label-free | Indirect | Coplanar transmission line using microfluidic channels | Shift in oscillation frequency | Discrimination of fat and calcium in blood |
[65] | 25 G | ex vivo | Label-free | Direct | UWB planar antenna | Relative permittivity | Cell quantification and counting in solution |
[46] | 4–10 G | in vivo | Label-free | Indirect | Split-ring resonator (SRR) using affinity binding | Conduction and specific absorption rate | Detection of tumors in human breast tissues |
[58] | 12 G | ex vivo | Label-free | Indirect | SRR using affinity binding | S-parameters/change in resonance frequency | DNA sensing |
[59] | 10 G | ex vivo | Label-free | Indirect | SRR using affinity binding | S-parameters/change in resonance frequency | Biotin and streptavidin sensing |
[64] | 10 k–8 G | ex vivo | Label-free | Indirect | Coplanar waveguide using affinity binding | S-parameters/change in resonance frequency | DNA biosensor |
[67] | 19.2–20.8 G | ex vivo | Label-free | Indirect | Interdigital capacitor (IDC) embedded in VCO using microfluidic channels | PLL gives output voltage signal | Characterization of liquids |
[70] | 5–14 G | ex vivo | Label-free | Indirect | IDC using microfluidic channels | PLL gives output voltage signal | Discrimination of colorectal cancer |
Paper | Operating Range (Hz) | In Vivo/Ex Vivo | Label/Label Free | Direct/Indirect | Biomatter Wave Modality | Detection Modality | Application |
---|---|---|---|---|---|---|---|
[34] | 40 G | ex vivo | Label-free | Direct | CPW transmission line | S-parameter/resonant frequency shift | Identifying cancer cells |
[61] | 35 G | ex vivo | Label-free | Direct | WGM resonator | Inverse quality factor and resonant frequency shift | Nanoliter liquid characterization |
[35] | G–THz | ex vivo | Label-free | Indirect | Resonator using affinity binding | S-parameter/resonant frequency shift | Biomolecular detection, glucose detection and hyperthermia treatment |
Paper | Operating Range (Hz) | In Vivo/Ex Vivo | Label/Label Free | Direct/Indirect | Biomatter Wave Modality | Detection Modality | Application |
---|---|---|---|---|---|---|---|
[72] | 0.4–1 T | ex vivo | Label-free | Indirect | Resonator using microfluidic channels | S-parameter/resonant frequency shift | Liver cancer biomarker detection |
[75] | 0.3–0.8 T | ex vivo | Label-free | Indirect | Planar resonator | S-parameter/resonant frequency shift | Detection of DNA hybridization |
Paper | Operating Range (nm) | In Vivo/Ex Vivo | Label/Label Free | Direct/Indirect | Biomatter Wave Modality | Detection Modality | Application |
---|---|---|---|---|---|---|---|
[127] | 200–900 nm | in vivo | Label-free | Indirect | Near infrared spectroscopy | Backscattered light | Detection of neural activity |
[117] | 400–800 | ex vivo | Label-free | Indirect | LSPR using affinity binding | Shift in the extinction maximum in LSPR spectrum | Detection of serum human epididymis secretory protein in patients with ovarian cancer |
[118] | 750 | ex vivo | Label-free | Indirect | LSPR using affinity binding | Change in reflected beam’s elliptical polarization parameters | Detection of short DNA molecules |
[121] | 780 | ex vivo | Label-free | Indirect | SPR using affinity binding | Shift in resonant wavelength | Diagnosis of Epstein–Barr virus infection |
[97] | 730–880 | in vivo | Label-free | Direct | Backscattering | PPG signals | Heart rate and Sp |
Paper | Operating Range (nm) | In Vivo/Ex Vivo | Label/Label Free | Direct/Indirect | Biomatter Wave Modality | Detection Modality | Application |
---|---|---|---|---|---|---|---|
[86] | 365 | ex vivo | label | Indirect | QD using affinity binding | Photoluminesc-ence | Detection of cancer biomarker |
[87] | 470 | ex vivo | Label-free | Indirect | PC SW using affinity binding | Reflectivity | Detection of Bovine Serum Albumin |
[115] | 658 | ex vivo | Label-free | Indirect | PC SW using affinity binding | Refractive index and adlayer thickness | Detection of vitamin-biotin |
[88] | 670 | ex vivo | Label-free | Indirect | Surface waves using affinity binding | Interferometry | Detection of avian influenza |
[137] | 400–800 | in vivo | Label-free | Direct | Laser Doppler flowmetry | Number of moving cells and their velocity | Microcirculation Changes in tissue |
[124] | 633 | ex vivo | Label | Indirect | SERS Photonic crystal fiber using affinity binding | SERS spectrum | Detection of cancer proteins |
[89] | 250–800 | ex vivo | Label-free | Indirect | LSPR using affinity binding | Absorption Spectra | Detection of immunoglobulins, C-reactive protein and fibrinogen |
[132] | 400–900 | ex vivo | Label-free | Indirect | Reflectometric interference using affinity binding | EOT | Detection of circulating tumor cells |
[90] | 540–780 | ex vivo | Label-free | Indirect | SPR using affinity binding | SPR angle shift | Detection of olegonucleotides, proteins and hormones |
[123] | 365 | ex vivo | Label-free | Indirect | SPR imaging sensor using affinity binding | Total response signal in RU (response units) | Probing small molecule binding events |
[138] | 400–500 | ex vivo | Label-free | Indirect | SPR using affinity binding | Total response signal in RU (response units) | Characterization of Protein-Carotenoid Interactions |
[93] | 600–850 | ex vivo | Label-free | Indirect | SPR using affinity binding | Total response signal in RU (response units) | Antigen-antibody and protein-DNA interaction detection |
[120] | - | ex vivo | Label-free | Indirect | SPR using affinity binding | Total response signal in RU (response units) | Myelodysplastic syndrome biomarker (VEGFR-1) detection |
[92] | 440–480 | ex vivo | Label | Direct | Genetically modified bacterium | Fluorescence | Mercury detection |
[134] | 633 | ex vivo | Label | Indirect | Total internal reflection imaging ellipsometry biosensor using affinity binding | Charge coupled device (ccd) camera stored in grayscale format | Serum tumor marker detection |
[91] | 660–850 | in vivo | Label-free | Direct | Backscattering | PPG signals | Heart rate and Sp |
[139] | 660–940 | in vivo | Label-free | Direct | Backscattering | PPG signals | Heart rate and Sp |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehrotra, P.; Chatterjee, B.; Sen, S. EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing. Sensors 2019, 19, 1013. https://doi.org/10.3390/s19051013
Mehrotra P, Chatterjee B, Sen S. EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing. Sensors. 2019; 19(5):1013. https://doi.org/10.3390/s19051013
Chicago/Turabian StyleMehrotra, Parikha, Baibhab Chatterjee, and Shreyas Sen. 2019. "EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing" Sensors 19, no. 5: 1013. https://doi.org/10.3390/s19051013
APA StyleMehrotra, P., Chatterjee, B., & Sen, S. (2019). EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing. Sensors, 19(5), 1013. https://doi.org/10.3390/s19051013