IMU-Based Effects Assessment of the Use of Foot Orthoses in the Stance Phase during Running and Asymmetry between Extremities
<p>(<b>Left</b>): position of the sensor attached to the instep of the running shoe. The triple orthogonal system represented by the arrows indicate the dorsi–planar flexion (red), abduction–adduction (blue) and eversion–inversion (green) movements. (<b>Right</b>): type of FOs used with the polypro-pylene and the EVA layers.</p> "> Figure 2
<p>(<b>Left</b>): angular displacement of the foot as a function of the percentage of the running cycle. (<b>Right</b>): stance phase segmentation graph where A indicates the start of contact, B corresponds to the mid-stance (stabilization), and C indicates the end of the stance. Legend: D–PF indicates dorsi–plantar flexion, ABD–ADD indicates abduction–abduction, EV–INV indicates eversion–inversion.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition Procedure
2.2. Data Processing
2.3. Data Analysis
3. Results
3.1. Comparison between Feet
3.2. Comparison between Footwear with and without FOs
4. Discussion
4.1. Comparison between Feet
4.2. Comparison between Footwear with and without FOs
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardigò, L.P.; Lafortuna, C.; Minetti, A.E.; Mognoni, P.; Saibene, F. Metabolic and mechanical aspects of foot landing type, forefoot and rearfoot strike, in human running. Acta Physiol. Scand. 1995, 155, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Ogueta-Alday, A.; Rodríguez-Marroyo, J.A.; García-López, J. Rearfoot striking runners are more economical than midfoot strikers. Med. Sci. Sports Exerc. 2014, 46, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.S.; McClay, I.S.; Manal, K.T. Lower extremity mechanics in runners with a converted forefoot strike pattern. J. Appl. Biomech. 2000, 16, 210–218. [Google Scholar] [CrossRef]
- Dugan, S.A.; Bhat, K.P. Biomechanics and analysis of running gait. Phys. Med. Rehabil. Clin. 2005, 16, 603–621. [Google Scholar] [CrossRef] [PubMed]
- Altman, A.R.; Davis, I.S. A kinematic method for footstrike pattern detection in barefoot and shod runners. Gait Posture 2012, 35, 298–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, P.R.; Lafortune, M.A. Ground reaction forces in distance running. J. Biomech. 1980, 13, 397–406. [Google Scholar] [CrossRef]
- Hasegawa, H.; Yamauchi, T.; Kraemer, W.J. Foot strike patterns of runners at the 15-km point during an elite-level half marathon. J. Strength Cond. Res. 2007, 21, 888. [Google Scholar]
- Williams, K.R.; Cavanagh, P.R. Relationship between distance running mechanics, running economy, and performance. J. Appl. Physiol. 1987, 63, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; De Boer, R.W.; Fisher, V. A kinematic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 1995, 27, 98–105. [Google Scholar] [CrossRef]
- Benson, L.C.; Clermont, C.A.; Ferber, R. New Considerations for Collecting Biomechanical Data Using Wearable Sensors: The Effect of Different Running Environments. Front. Bioeng. Biotechnol. 2020, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Bötzel, K.; Marti, F.M.; Rodríguez, M.Á.C.; Plate, A.; Vicente, A.O. Gait recording with inertial sensors–How to determine initial and terminal contact. J. Biomech. 2016, 49, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Boutaayamou, M.; Schwartz, C.; Stamatakis, J.; Denoël, V.; Maquet, D.; Forthomme, B.; Croisiera, J.-L.; Macqc, B.; Verlyb, J.G.; Garrauxd, G.; et al. Development and validation of an accelerometer-based method for quantifying gait events. Med. Eng. Phys. 2015, 37, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Giandolini, M.; Poupard, T.; Gimenez, P.; Horvais, N.; Millet, G.Y.; Morin, J.B.; Samozino, P. A simple field method to identify foot strike pattern during running. J. Biomech. 2014, 47, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Laughton, C.A.; Davis, I.M.; Hamill, J. Effect of strike pattern and orthotic intervention on tibial shock during running. J. Appl. Biomech. 2003, 19, 153–168. [Google Scholar] [CrossRef]
- Moon, Y.; McGinnis, R.S.; Seagers, K.; Motl, R.W.; Sheth, N.; Wright, J.A., Jr.; Ghaffari, R.; Sosnoff, J.J. Monitoring gait in multiple sclerosis with novel wearable motion sensors. PLoS ONE 2017, 12, e0171346. [Google Scholar] [CrossRef] [PubMed]
- Purcell, B.; Channells, J.; James, D.; Barrett, R. Use of accelerometers for detecting foot-ground contact time during running. In BioMEMS and Nanotechnology II; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6036, p. 603615. [Google Scholar]
- Sinclair, J.; Hobbs, S.J.; Protheroe, L.; Edmundson, C.J.; Greenhalgh, A. Determination of gait events using an externally mounted shank accelerometer. J. Appl. Biomech. 2013, 29, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Phinyomark, A.; Osis, S.; Hettinga, B.A.; Ferber, R. Kinematic gait patterns in healthy runners: A hierarchical cluster analysis. J. Biomech. 2015, 48, 3897–3904. [Google Scholar] [CrossRef]
- Shiang, T.Y.; Hsieh, T.Y.; Lee, Y.S.; Wu, C.C.; Yu, M.C.; Mei, C.H.; Tai, I.H. Determine the foot strike pattern using inertial sensors. J. Sens. 2016, 2016, 4759626. [Google Scholar] [CrossRef] [Green Version]
- Fields, K.B.; Sykes, J.C.; Walker, K.M.; Jackson, J.C. Prevention of running injuries. Curr. Sports Med. Rep. 2010, 9, 176–182. [Google Scholar] [CrossRef]
- Meeuwisse, W.H. Assessing causation in sport injury: A multifactorial model. Clin. J. Sport Med. 1994, 4, 166–170. [Google Scholar] [CrossRef]
- Van Gent, R.N.; Siem, D.; van Middelkoop, M.; Van Os, A.G.; Bierma-Zeinstra, S.M.A.; Koes, B.W. Incidence and determinants of lower extremity running injuries in long distance runners: A systematic review. Br. J. Sports Med. 2007, 41, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Vagenas, G.; Hoshizaki, B. A multivariable analysis of lower extremity kinematic asymmetry in running. J. Appl. Biomech. 1992, 8, 11–29. [Google Scholar] [CrossRef]
- Barber, S.D.; Noyes, F.R.; Mangine, R.E.; McColskey, J.W.; Hartman, W. Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin. Orthop. Related Res. 1990, 255, 204–214. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [Green Version]
- Kirby, K.A. Evolution of foot orthoses in sports. In Athletic Footwear and Orthoses in Sports Medicine; Springer: Cham, Switzerland, 2017; pp. 19–40. [Google Scholar]
- Mündermann, A.; Nigg, B.M.; Humble, R.N.; Stefanyshyn, D.J. Foot orthotics affect lower extremity kinematics and kinetics during running. Clin. Biomech. 2003, 18, 254–262. [Google Scholar] [CrossRef]
- Lack, S.; Barton, C.; Woledge, R.; Laupheimer, M.; Morrissey, D. The immediate effects of foot orthoses on hip and knee kinematics and muscle activity during a functional step-up task in individuals with patellofemoral pain. Clin. Biomech. 2014, 29, 1056–1062. [Google Scholar]
- Brognara, L.; Navarro-Flores, E.; Iachemet, L.; Serra-Catalá, N.; Cauli, O. Beneficial effect of foot plantar stimulation in gait parameters in individuals with Parkinson’s disease. Brain Sci. 2020, 10, 69. [Google Scholar]
- Bonanno, D.R.; Landorf, K.B.; Munteanu, S.E.; Murley, G.S.; Menz, H.B. Effectiveness of foot orthoses and shock-absorbing insoles for the prevention of injury: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 86–96. [Google Scholar] [CrossRef]
- Franklyn-Miller, A.; Wilson, C.; Bilzon, J.; McCrory, P. Foot orthoses in the prevention of injury in initial military training: A randomized controlled trial. Am. J. Sports Med. 2011, 39, 30–37. [Google Scholar] [CrossRef]
- Polk, J.D.; Stumpf, R.M.; Rosengren, K.S. Limb dominance, foot orientation and functional asymmetry during walking gait. Gait Posture 2017, 52, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, G.R. Declaration of Helsinki-the world’s document of conscience and responsibility. South. Med. J. 2014, 107, 407. [Google Scholar] [CrossRef] [PubMed]
- MPOD1. MotionPod Manual de Usuario. Movea Motion Copyright © 2008–2009. Available online: https://fccid.io/JJ4-MPOD1/Users-Manual/Users-Manual-1206708 (accessed on 10 May 2021).
- Manual de Instrucciones. BioVal—RM Ingenierie Movea Motion Copyright © 2008–2009. Available online: https://www.rmingenierie.net/bioval/ (accessed on 10 May 2021).
- Seifert, L.; L’hermette, M.; Komar, J.; Orth, D.; Mell, F.; Merriaux, P.; Grenetd, P.; Caritud, Y.; Héraulte, R.; Dovgalecsa, V.; et al. Pattern recognition in cyclic and discrete skills performance from inertial measurement units. Procedia Eng. 2014, 72, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Lussiana, T.; Fabre, N.; Hébert-Losier, K.; Mourot, L. Effect of slope and footwear on running economy and kinematics. Scand. J. Med. Sci. Sports 2013, 23, e246–e253. [Google Scholar] [CrossRef]
- Fischer, K.M.; Willwacher, S.; Hamill, J.; Brüggemann, G.P. Tibial rotation in running: Does rearfoot adduction matter? Gait Posture 2017, 51, 188–193. [Google Scholar] [CrossRef]
- Firminger, C.R.; Vernillo, G.; Savoldelli, A.; Stefanyshyn, D.J.; Millet, G.Y.; Edwards, W.B. Joint kinematics and ground reaction forces in overground versus treadmill graded running. Gait Posture 2018, 63, 109–113. [Google Scholar] [CrossRef]
- Fellin, R.E.; Manal, K.; Davis, I.S. Comparison of lower extremity kinematic curves during overground and treadmill running. J. Appl. Biomech. 2010, 26, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Turner, A.; Maloney, S.; Lake, J.; Loturco, I.; Bromley, T.; Read, P. Drop jump asymmetry is associated with reduced sprint and change-of-direction speed performance in adult female soccer players. Sports 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Interlimb asymmetries: Understanding how to calculate differences from bilateral and unilateral tests. Strength Cond. J. 2018, 40, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Hillsdle, MN, USA, 1988. [Google Scholar]
- Chuan, C.L.; Penyelidikan, J. Sample size estimation using Krejcie and Morgan and Cohen statistical power analysis: A comparison. J. Penyelid. IPBL 2006, 7, 78–86. [Google Scholar]
- Razali, N.M.; Wah, Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Root, M.L.; Orien, W.P.; Weed, J.H. Biomechanical Examination of the Foot. J. Am. Podiatry Assoc. 1973, 63, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling—A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef]
- Cowley, E. The Effects of Prolonged Running on the Biomechanics and Function of the Foot and Ankle. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2019. [Google Scholar]
- Stodółka, J.; Blach, W.; Vodicar, J.; Maćkała, K. The Characteristics of Feet Center of Pressure Trajectory during Quiet Standing. Appl. Sci. 2020, 10, 2940. [Google Scholar] [CrossRef]
- Montañola Vidal, A. Medida del Equilibrio Estático en Corredores de Maratón Mediante Baropodometría Optométrica. Ph.D. Thesis, Universitat Ramon Llull, Barcelona, Spain, 2014. [Google Scholar]
- de Carvalho, B.K.G.; Penha, P.J.; Ramos, N.L.J.P.; Andrade, R.M.; Ribeiro, A.P.; João, S.M.A. Age, Sex, Body Mass Index, and Laterality in the Foot Posture of Adolescents: A Cross Sectional Study. J. Manip. Physiol. Ther. 2020, 43, 744–752. [Google Scholar] [CrossRef]
- Rai, D.V.; Aggarwal, L.M.; Bahadur, R. Plantar pressure changes in normal and pathological foot during bipedal standing. Indian J. Orthop. 2006, 40, 119. [Google Scholar] [CrossRef]
- Radzak, K.N.; Putnam, A.M.; Tamura, K.; Hetzler, R.K.; Stickley, C.D. Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait Posture 2017, 51, 268–274. [Google Scholar] [CrossRef]
- Gao, Z.; Mei, Q.; Xiang, L.; Baker, J.S.; Fernandez, J.; Gu, Y. Effects of limb dominance on the symmetrical distribution of plantar loading during walking and running. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2020, 1754337120960962. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Calvo-Lobo, C.; Navarro-Flores, E.; Palomo-López, P.; Romero-Morales, C.; López-López, D. Reliability Study of Diagnostic Tests for Functional Hallux Limitus. Foot Ankle Int. 2020, 41, 457–462. [Google Scholar] [CrossRef]
- Nawoczenski, D.A.; Cook, T.M.; Saltzman, C.L. The effect of foot orthotics on three-dimensional kinematics of the leg and rearfoot during running. J. Orthop. Sports Phys. Ther. 1995, 21, 317–327. [Google Scholar] [CrossRef]
- Kapandji, A.I. Fisiología Articular T2: Miembro Inferior; Médica Panamericana: Madrid, Spain, 2007. [Google Scholar]
- Açak, M. The effects of individually designed insoles on pes planus treatment. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
Left | Right | Asymmetry | p-Value | d-Cohen | |
---|---|---|---|---|---|
Dorsal–Plantar Flexion | 96.6 ± 13.5 | 96.2 ± 14.7 | 6.2 ± 5.2 | 0.76 | 0.05 |
Eversion–Inversion | 12.2 ± 3.8 | 13.36 ± 3.9 | 31.9 ± 18.2 | 0.09 | 0.28 |
Abduction–Adduction | 21.3 ± 7.4 | 25.4 ± 9.8 | 21.7 ± 14.5 | 0.03 * | 0.37 |
Footwear | Orthoses (FOs) | Difference | p-Value | d-Cohen | ||
---|---|---|---|---|---|---|
Left | Dorsi–plantar flexion (°) | 96.6 ± 13.5 | 97.2 ± 12.1 | 0.62 ↑ | 0.42 | −0.13 |
Eversion–Inversion (°) | 12.2 ± 3.8 | 11.5 ± 3.8 | −0.77 ↓ | 0.02 * | 0.37 | |
Abduction–Adduction (°) | 21.3 ± 7.4 | 19.5 ± 6.9 | −1.76 ↓ | 0.06 | 0.30 | |
Contact time (ms) | 454 ± 41 | 459 ± 39 | 5 ↑ | 0.01 * | −0.42 | |
Total time (ms) | 730 ± 54 | 736 ± 53 | 6 ↑ | 0.01 * | −0.40 | |
Number of steps | 14.9 ± 1.5 | 14.8 ± 1.4 | 0.1 = | 0.44 | 0.12 | |
Right | Dorsi–plantar flexion (°) | 96.2 ± 14.7 | 96.1 ± 13.5 | −0.06 ↓ | 0.94 | 0.01 |
Eversion–Inversion (°) | 13.4 ± 3.9 | 13.2 ± 3.9 | −0.17 ↓ | 0.75 | 0.05 | |
Abduction–Adduction (°) | 25.4 ± 9.8 | 23.4 ± 8.9 | −2.01 ↓ | 0.05 | 0.32 | |
Contact time (ms) | 455 ± 42 | 461 ± 40 | 6 ↑ | 0.01 * | −0.47 | |
Total time (ms) | 730 ± 55 | 736 ± 53 | 6 ↑ | 0.01 * | −0.39 | |
Number of steps | 15.2 ± 1,3 | 15.0 ± 1.3 | 0.2 = | 0.04 * | 0,34 | |
Both | Dorsi–plantar flexion (°) | 96.4 ± 14.2 | 96. 7 ± 12.9 | 0.28 ↑ | 0.60 | −0.06 |
Eversion–Inversion (°) | 12.8 ± 3.9 | 12.3 ± 4.0 | 0.47 ↓ | 0.13 | 0.17 | |
Abduction–Adduction (°) | 23.3 ± 9.0 | 21.5 ± 8.2 | 1.89 ↓ | 0.01 * | 0.31 | |
Contact time (ms) | 454 ± 42 | 460 ± 40 | 6 ↑ | <0.01 * | −0.45 | |
Total time (ms) | 730 ± 55 | 736 ± 53 | 6 ↑ | <0.01 * | −0.40 | |
Number of steps | 15.0 ± 1.4 | 14.9 + 1.3 | 0.1 = | 0.05 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florenciano Restoy, J.L.; Solé-Casals, J.; Borràs-Boix, X. IMU-Based Effects Assessment of the Use of Foot Orthoses in the Stance Phase during Running and Asymmetry between Extremities. Sensors 2021, 21, 3277. https://doi.org/10.3390/s21093277
Florenciano Restoy JL, Solé-Casals J, Borràs-Boix X. IMU-Based Effects Assessment of the Use of Foot Orthoses in the Stance Phase during Running and Asymmetry between Extremities. Sensors. 2021; 21(9):3277. https://doi.org/10.3390/s21093277
Chicago/Turabian StyleFlorenciano Restoy, Juan Luis, Jordi Solé-Casals, and Xantal Borràs-Boix. 2021. "IMU-Based Effects Assessment of the Use of Foot Orthoses in the Stance Phase during Running and Asymmetry between Extremities" Sensors 21, no. 9: 3277. https://doi.org/10.3390/s21093277
APA StyleFlorenciano Restoy, J. L., Solé-Casals, J., & Borràs-Boix, X. (2021). IMU-Based Effects Assessment of the Use of Foot Orthoses in the Stance Phase during Running and Asymmetry between Extremities. Sensors, 21(9), 3277. https://doi.org/10.3390/s21093277