SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks
<p>SMOTE-DRNN for botnet attack detection in IoT networks.</p> "> Figure 2
<p>Training losses of the DRNN and SMOTE-DRNN models.</p> "> Figure 3
<p>Validation losses of the DRNN and SMOTE-DRNN models.</p> "> Figure 4
<p>Confusion matrix of the DRNN model.</p> "> Figure 5
<p>Confusion matrix of the SMOTE-DRNN model.</p> "> Figure 6
<p>Critical distance diagram showing the mean ranks of the ML/DL models.</p> ">
Abstract
:1. Introduction
- 1.
- An efficient DL-based botnet attack detection algorithm is proposed for highly imbalanced network traffic data. Synthetic Minority Oversampling Technique (SMOTE) generates additional minority samples to achieve class balance, while Deep RNN (DRNN) learns hierarchical feature representations from the balanced network traffic data to perform discriminative classification.
- 2.
- DRNN and SMOTE-DRNN models are trained, validated and tested with the Bot-IoT dataset to classify network traffic samples in the normal class and ten botnet attack classes.
- 3.
- We investigate the effect of class imbalance on the accuracy, precision, recall, F1 score, false positive rate (FPR), negative predictive value (NPV), area under the receiver operating characteristic curve (AUC), geometric mean (GM) and Matthews correlation coefficient (MCC) of the DRNN and SMOTE-DRNN models.
- 4.
- The training time and the testing time of the DRNN and SMOTE-DRNN models are analysed to evaluate their training speed and detection speed.
2. Review of Related Works
3. SMOTE-DRNN Algorithm and Model Development
3.1. Network Traffic Data
3.2. Data Preprocessing
3.3. Synthetic Minority Oversampling Technique
Algorithm 1: SMOTE algorithm. |
3.4. Deep Recurrent Neural Network
Algorithm 2: DRNN algorithm. |
4. Results and Discussion
4.1. Classification Performance Metrics
4.2. Robustness against Model Underfitting and Overfitting
4.3. Classification Performance
4.4. Comparison with State-of-the-Art ML/DL Models
- 1.
- The OSF, SS and KL classes for the RNN model in [67];
- 2.
- All classes, except DU, for the SVM model in [67];
- 3.
- All classes for the RF and NB models in [67];
- 4.
- All classes, except DE, for the DL models in [68];
- 5.
- All classes, except DT, DU, DE and KL, for the RDTIDS model in [69]; and
- 6.
- The OSF, SS, DE and KL classes for the BLSTM model in [70].
5. Conclusions
- 1.
- The training and validation losses of the SMOTE-DRNN model were lower by and , respectively, compared to those of the DRNN model.
- 2.
- The DRNN and SMOTE-DRNN models achieved high classification performance in the majority classes (DDT, DDU, DT, DU, OSF and SS).
- 3.
- Accuracy, FPR and NPV are not suitable metrics for evaluating classification performance when the sample distribution across the classes of network traffic data is highly imbalanced.
- 4.
- For minority classes (DDH, DH, Norm, DE and KL), the precision, recall, F1 score, AUC, GM and MCC of the DRNN model were low due to high class imbalance.
- 5.
- On the other hand, the SMOTE-DRNN model achieved higher values of precision, recall, F1 score, AUC, GM and MCC in all 11 classes than the DRNN model.
- 6.
- The SMOTE-DRNN model outperformed the state-of-the-art ML/DL models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Cisco. Annual Internet Report (2018–2023). Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 19 September 2020).
- Vormayr, G.; Zseby, T.; Fabini, J. Botnet communication patterns. IEEE Commun. Surv. Tutor. 2017, 19, 2768–2796. [Google Scholar] [CrossRef]
- Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.; Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110. [Google Scholar]
- Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other botnets. Computer 2017, 50, 80–84. [Google Scholar] [CrossRef]
- Lee, R.M.; Assante, M.J.; Tim, C. Analysis of the cyber attack on the Ukrainian power grid. Electr. Inf. Shar. Anal. Cent. 2016, 388, 1–23. [Google Scholar]
- Davis, B.D.; Mason, J.C.; Anwar, M. Vulnerability Studies and Security Postures of IoT Devices: A Smart Home Case Study. IEEE Internet Things J. 2020, 7, 10102–10110. [Google Scholar] [CrossRef]
- Zhou, W.; Jia, Y.; Peng, A.; Zhang, Y.; Liu, P. The effect of iot new features on security and privacy: New threats, existing solutions, and challenges yet to be solved. IEEE Internet Things J. 2018, 6, 1606–1616. [Google Scholar] [CrossRef] [Green Version]
- Stoyanova, M.; Nikoloudakis, Y.; Panagiotakis, S.; Pallis, E.; Markakis, E.K. A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches and Open Issues. IEEE Commun. Surv. Tutor. 2020, 22, 1191–1221. [Google Scholar] [CrossRef]
- Stellios, I.; Kotzanikolaou, P.; Psarakis, M.; Alcaraz, C.; Lopez, J. A survey of iot-enabled cyberattacks: Assessing attack paths to critical infrastructures and services. IEEE Commun. Surv. Tutor. 2018, 20, 3453–3495. [Google Scholar] [CrossRef]
- Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How can heterogeneous Internet of Things build our future: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2011–2027. [Google Scholar] [CrossRef]
- McMillen, D.; Gao, W.; DeBeck, C. A New Botnet Attack Just Mozied into Town. Available online: https://securityintelligence.com/posts/botnet-attack-mozi-mozied-into-town/ (accessed on 18 September 2020).
- Soltan, S.; Mittal, P.; Poor, H.V. BlackIoT: IoT botnet of high wattage devices can disrupt the power grid. In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 15–32. [Google Scholar]
- Soltan, S.; Mittal, P.; Poor, H.V. Protecting the grid against iot botnets of high-wattage devices. arXiv 2018, arXiv:1808.03826. [Google Scholar]
- Lallie, H.S.; Shepherd, L.A.; Nurse, J.R.; Erola, A.; Epiphaniou, G.; Maple, C.; Bellekens, X. Cyber security in the age of covid-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic. arXiv 2020, arXiv:2006.11929. [Google Scholar]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, J.; Li, Y.; Xu, R. Deep Learning for Short-Term Voltage Stability Assessment of Power Systems. IEEE Access 2021, 9, 29711–29718. [Google Scholar] [CrossRef]
- Ajdani, M.; Ghaffary, H. Introduced a new method for enhancement of intrusion detection with random forest and PSO algorithm. Secur. Priv. 2021, 4, e147. [Google Scholar]
- Mohammadi, M.; Rashid, T.A.; Karim, S.H.T.; Aldalwie, A.H.M.; Tho, Q.T.; Bidaki, M.; Rahmani, A.M.; Hoseinzadeh, M. A comprehensive survey and taxonomy of the SVM-based intrusion detection systems. J. Netw. Comput. Appl. 2021, 178, 102983. [Google Scholar] [CrossRef]
- Ramaiah, M.; Chandrasekaran, V.; Ravi, V.; Kumar, N. An intrusion detection system using optimized deep neural network architecture. Trans. Emerg. Telecommun. Technol. 2021, 32, e4221. [Google Scholar]
- Popoola, S.I.; Adebisi, B.; Hammoudeh, M.; Gacanin, H.; Gui, G. Stacked recurrent neural network for botnet detection in smart homes. Comput. Electr. Eng. 2021, 92, 107039. [Google Scholar] [CrossRef]
- Popoola, S.I.; Adebisi, B.; Hammoudeh, M.; Gui, G.; Gacanin, H. Hybrid Deep Learning for Botnet Attack Detection in the Internet of Things Networks. IEEE Internet Things J. 2020, 8, 4944–4956. [Google Scholar] [CrossRef]
- Popoola, S.I.; Ande, R.; Fatai, K.B.; Adebisi, B. Deep Bidirectional Gated Recurrent Unit for Botnet Detection in Smart Homes. In Machine Learning and Data Mining for Emerging Trend in Cyber Dynamics: Theories and Applications; Springer: Cham, Switzerland, 2021; p. 29. [Google Scholar]
- Aversano, L.; Bernardi, M.L.; Cimitile, M.; Pecori, R. A systematic review on Deep Learning approaches for IoT security. Comput. Sci. Rev. 2021, 40, 100389. [Google Scholar] [CrossRef]
- Chauhan, M.; Agarwal, M. Study of Various Intrusion Detection Systems: A Survey. Smart Sustain. Intell. Syst. 2021, 25, 355–372. [Google Scholar]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 1–21. [Google Scholar] [CrossRef]
- Khraisat, A.; Alazab, A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity 2021, 4, 1–27. [Google Scholar] [CrossRef]
- Hamid, H.; Noor, R.M.; Omar, S.N.; Ahmedy, I.; Anjum, S.S.; Shah, S.A.A.; Kaur, S.; Othman, F.; Tamil, E.M. IoT-based botnet attacks systematic mapping study of literature. Scientometrics 2021, 126, 2759–2800. [Google Scholar] [CrossRef]
- Ahmad, R.; Alsmadi, I. Machine learning approaches to IoT security: A systematic literature review. Internet Things 2021, 14, 100365. [Google Scholar] [CrossRef]
- Fernández, A.; García, S.; del Jesus, M.J.; Herrera, F. A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 2008, 159, 2378–2398. [Google Scholar] [CrossRef]
- Van Hulse, J.; Khoshgoftaar, T.M.; Napolitano, A. Experimental perspectives on learning from imbalanced data. In Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, USA, 20–24 June 2007; pp. 935–942. [Google Scholar]
- Jing, X.Y.; Zhang, X.; Zhu, X.; Wu, F.; You, X.; Gao, Y.; Shan, S.; Yang, J.Y. Multiset feature learning for highly imbalanced data classification. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Jo, T.; Japkowicz, N. Class imbalances versus small disjuncts. ACM Sigkdd Explor. Newsl. 2004, 6, 40–49. [Google Scholar] [CrossRef]
- Lu, Y.; Cheung, Y.m.; Tang, Y.Y. Bayes Imbalance Impact Index: A Measure of Class Imbalanced Data Set for Classification Problem. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3525–3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odusami, M.; Misra, S.; Adetiba, E.; Abayomi-Alli, O.; Damasevicius, R.; Ahuja, R. An improved model for alleviating layer seven distributed denial of service intrusion on webserver. J. Phys. Conf. Ser. 2019, 1235, 012020. [Google Scholar] [CrossRef]
- Biswas, R.; Roy, S. Botnet traffic identification using neural networks. Multimed. Tools Appl. 2021. [Google Scholar] [CrossRef]
- Tyagi, H.; Kumar, R. Attack and Anomaly Detection in IoT Networks Using Supervised Machine Learning Approaches. Rev. d’Intell. Artif. 2021, 35, 11–21. [Google Scholar]
- Lo, W.W.; Layeghy, S.; Sarhan, M.; Gallagher, M.; Portmann, M. E-GraphSAGE: A Graph Neural Network based Intrusion Detection System. arXiv 2021, arXiv:2103.16329. [Google Scholar]
- Chauhan, P.; Atulkar, M. Selection of Tree Based Ensemble Classifier for Detecting Network Attacks in IoT. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021; pp. 770–775. [Google Scholar]
- Idrissi, I.; Boukabous, M.; Azizi, M.; Moussaoui, O.; El Fadili, H. Toward a deep learning-based intrusion detection system for IoT against botnet attacks. IAES Int. J. Artif. Intell. 2021, 10, 110. [Google Scholar]
- Huong, T.T.; Bac, T.P.; Long, D.M.; Thang, B.D.; Luong, T.D.; Binh, N.T. An Efficient Low Complexity Edge-Cloud Framework for Security in IoT Networks. In Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), Phu Quoc Island, Vietnam, 13–15 January 2021; pp. 533–539. [Google Scholar]
- Huong, T.T.; Bac, T.P.; Long, D.M.; Thang, B.D.; Binh, N.T.; Luong, T.D.; Phuc, T.K. LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing. IEEE Access 2021, 9, 29696–29710. [Google Scholar] [CrossRef]
- Lee, S.; Abdullah, A.; Jhanjhi, N.; Kok, S. Classification of botnet attacks in IoT smart factory using honeypot combined with machine learning. PeerJ Comput. Sci. 2021, 7, e350. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, M.; Tian, Z.; Sun, Y.; Du, X.; Guizani, M. Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Future Gener. Comput. Syst. 2020, 107, 433–442. [Google Scholar] [CrossRef]
- Tiwari, V.; Jain, P.K.; Tandon, P. A bijective soft set theoretic approach for concept selection in design process. J. Eng. Des. 2017, 28, 100–117. [Google Scholar] [CrossRef]
- Zakariyya, I.; Al-Kadri, M.O.; Kalutarage, H. Resource Efficient Boosting Method for IoT Security Monitoring. In Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–6. [Google Scholar]
- Susilo, B.; Sari, R.F. Intrusion Detection in Software Defined Network Using Deep Learning Approach. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021; pp. 0807–0812. [Google Scholar]
- Ahmed, H.I.; Nasr, A.A.; Abdel-Mageid, S.M.; Aslan, H.K. DADEM: Distributed Attack Detection Model Based on Big Data Analytics for the Enhancement of the Security of Internet of Things (IoT). Int. J. Ambient. Comput. Intell. 2021, 12, 114–139. [Google Scholar] [CrossRef]
- Das, A.; Ajila, S.A.; Lung, C.H. A Comprehensive Analysis of Accuracies of Machine Learning Algorithms for Network Intrusion Detection. In Proceedings of the International Conference on Machine Learning for Networking, Paris, France, 3–5 December 2019; pp. 40–57. [Google Scholar]
- Alshamkhany, M.; Alshamkhany, W.; Mansour, M.; Khan, M.; Dhou, S.; Aloul, F. Botnet Attack Detection using Machine Learning. In Proceedings of the 2020 14th International Conference on Innovations in Information Technology (IIT), Abu Dhabi, United Arab Emirates, 16–17 November 2020; pp. 203–208. [Google Scholar]
- Sriram, S.; Vinayakumar, R.; Alazab, M.; Soman, K. Network Flow based IoT Botnet Attack Detection using Deep Learning. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 189–194. [Google Scholar]
- Priya, V.; Thaseen, I.S.; Gadekallu, T.R.; Aboudaif, M.K.; Nasr, E.A. Robust attack detection approach for IIoT using ensemble classifier. arXiv 2021, arXiv:2102.01515. [Google Scholar]
- Kunang, Y.N.; Nurmaini, S.; Stiawan, D.; Suprapto, B.Y. Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization. In Proceedings of the 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 10–11 December 2020; pp. 146–151. [Google Scholar]
- Zixu, T.; Liyanage, K.S.K.; Gurusamy, M. Generative Adversarial Network and Auto Encoder based Anomaly Detection in Distributed IoT Networks. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–7. [Google Scholar]
- Ge, M.; Syed, N.F.; Fu, X.; Baig, Z.; Robles-Kelly, A. Towards a deep learning-driven intrusion detection approach for Internet of Things. Comput. Netw. 2021, 186, 107784. [Google Scholar] [CrossRef]
- NG, B.A.; Selvakumar, S. Anomaly detection framework for Internet of things traffic using vector convolutional deep learning approach in fog environment. Future Gener. Comput. Syst. 2020, 113, 255–265. [Google Scholar]
- Asadi, M.; Jamali, M.A.J.; Parsa, S.; Majidnezhad, V. Detecting botnet by using particle swarm optimization algorithm based on voting system. Future Gener. Comput. Syst. 2020, 107, 95–111. [Google Scholar] [CrossRef]
- Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. A Novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks. Electronics 2019, 8, 1210. [Google Scholar] [CrossRef] [Green Version]
- Aldhaheri, S.; Alghazzawi, D.; Cheng, L.; Alzahrani, B.; Al-Barakati, A. DeepDCA: Novel Network-Based Detection of IoT Attacks Using Artificial Immune System. Appl. Sci. 2020, 10, 1909. [Google Scholar] [CrossRef] [Green Version]
- Kayacik, H.G.; Zincir-Heywood, A.N.; Heywood, M.I. Selecting features for intrusion detection: A feature relevance analysis on KDD 99 intrusion detection datasets. In Proceedings of the Third Annual Conference on Privacy, Security and Trust, St. Andrews, NB, Canada, 12–14 October 2005; Volume 94, pp. 1722–1723. [Google Scholar]
- Samdekar, R.; Ghosh, S.; Srinivas, K. Efficiency Enhancement of Intrusion Detection in Iot Based on Machine Learning Through Bioinspire. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 383–387. [Google Scholar]
- Kumar, P.; Gupta, G.P.; Tripathi, R. Toward Design of an Intelligent Cyber Attack Detection System using Hybrid Feature Reduced Approach for IoT Networks. Arab. J. Sci. Eng. 2021, 46, 3749–3778. [Google Scholar] [CrossRef]
- Injadat, M.; Moubayed, A.; Shami, A. Detecting botnet attacks in IoT environments: An optimized machine learning approach. arXiv 2020, arXiv:2012.11325. [Google Scholar]
- Ülker, E.; Nur, I.M. A Novel Hybrid IoT Based IDS Using Binary Grey Wolf Optimizer (BGWO) and Naive Bayes (NB). Avrupa Bilim ve Teknoloji Dergisi 2020, 279–286. [Google Scholar]
- Oreški, D.; Andročec, D. Genetic algorithm and artificial neural network for network forensic analytics. In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28 September–2 October 2020; pp. 1200–1205. [Google Scholar]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E. A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework. Future Gener. Comput. Syst. 2020, 110, 91–106. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Maglaras, L. DeepCoin: A Novel Deep Learning and Blockchain-Based Energy Exchange Framework for Smart Grids. IEEE Trans. Eng. Manag. 2019, 67, 1285–1297. [Google Scholar] [CrossRef] [Green Version]
- Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Maglaras, L.; Ahmim, A.; Derdour, M.; Janicke, H. RDTIDS: Rules and Decision Tree-Based Intrusion Detection System for Internet-of-Things Networks. Future Internet 2020, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Alkadi, O.; Moustafa, N.; Turnbull, B.; Choo, K.K.R. A Deep Blockchain Framework-enabled Collaborative Intrusion Detection for Protecting IoT and Cloud Networks. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Pokhrel, S.; Abbas, R.; Aryal, B. IoT Security: Botnet detection in IoT using Machine learning. arXiv 2021, arXiv:2104.02231. [Google Scholar]
- Bagui, S.; Li, K. Resampling imbalanced data for network intrusion detection datasets. J. Big Data 2021, 8, 1–41. [Google Scholar] [CrossRef]
- Qaddoura, R.; Al-Zoubi, A.; Almomani, I.; Faris, H. A Multi-Stage Classification Approach for IoT Intrusion Detection Based on Clustering with Oversampling. Appl. Sci. 2021, 11, 3022. [Google Scholar] [CrossRef]
- Derhab, A.; Aldweesh, A.; Emam, A.Z.; Khan, F.A. Intrusion Detection System for Internet of Things Based on Temporal Convolution Neural Network and Efficient Feature Engineering. Wirel. Commun. Mob. Comput. 2020, 2020, 6689134. [Google Scholar] [CrossRef]
- Friedman, L.; Komogortsev, O.V. Assessment of the Effectiveness of Seven Biometric Feature Normalization Techniques. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2528–2536. [Google Scholar] [CrossRef]
- Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Ling, C.X.; Li, C. Data mining for direct marketing: Problems and solutions. KDD 1998, 98, 73–79. [Google Scholar]
- Japkowicz, N. The class imbalance problem: Significance and strategies. In Proceedings of the International Conference on Artificial Intelligence, Acapulco, Mexico, 11–14 April 2000; Volume 56. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
Ref. | Class | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DDH | DDT | DDU | DH | DT | DU | Norm | OSF | SS | DE | KL | |
[67] | 594 | 498,602 | 484,127 | 942 | 317,899 | 526,487 | 4000 | 9002 | 36,700 | 102 | 106 |
[68] | 1582 | 1,563,808 | 1,517,208 | 2376 | 985,280 | 1,652,759 | 7634 | 28,662 | 117,069 | 94 | 1175 |
[69] | 1582 | 1,563,808 | 1,517,208 | 2376 | 985,280 | 1,652,759 | 7634 | 28,662 | 117,069 | 94 | 1175 |
[40] | 786 | 781,468 | 759,163 | 1191 | 492,581 | 826,475 | 385 | 14,101 | 51,351 | 5 | 66 |
Ours | 588 | 586,393 | 568,760 | 906 | 369,965 | 619,414 | 290 | 10,795 | 43,949 | 4 | 48 |
Class | Training | Validation | Testing |
---|---|---|---|
DDH | 588 | 197 | 204 |
DDT | 586,393 | 195,713 | 195,274 |
DDU | 568,760 | 189,407 | 190,088 |
DH | 906 | 311 | 268 |
DT | 369,965 | 122,861 | 122,974 |
DU | 619,414 | 206,772 | 206,789 |
Norm | 290 | 86 | 101 |
OSF | 10,795 | 3537 | 3582 |
SS | 43,949 | 14,806 | 14,413 |
DE | 4 | 1 | 1 |
KL | 48 | 14 | 11 |
Class | Model | Accuracy | Precision | Recall | F1 | FPR | NPV | AUC | GM | MCC |
---|---|---|---|---|---|---|---|---|---|---|
DDH | DRNN | 99.99 | 96.34 | 77.45 | 85.87 | 0.00 | 99.99 | 88.73 | 98.15 | 86.38 |
SMOTE-DRNN | 100.00 | 100.00 | 99.02 | 99.51 | 0.00 | 100.00 | 99.51 | 100.00 | 99.51 | |
DDT | DRNN | 99.99 | 99.99 | 99.96 | 99.97 | 0.00 | 99.99 | 99.98 | 99.99 | 99.96 |
SMOTE-DRNN | 99.99 | 99.98 | 99.99 | 99.99 | 0.01 | 100.00 | 99.99 | 99.99 | 99.98 | |
DDU | DRNN | 100.00 | 99.99 | 100.00 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 |
SMOTE-DRNN | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
DH | DRNN | 99.99 | 86.99 | 94.78 | 90.71 | 0.01 | 100.00 | 97.39 | 93.27 | 90.79 |
SMOTE-DRNN | 100.00 | 99.25 | 99.25 | 99.25 | 0.00 | 100.00 | 99.63 | 99.63 | 99.25 | |
DT | DRNN | 99.99 | 99.93 | 99.99 | 99.96 | 0.01 | 100.00 | 99.99 | 99.97 | 99.95 |
SMOTE-DRNN | 99.99 | 99.99 | 99.97 | 99.98 | 0.00 | 99.99 | 99.98 | 99.99 | 99.98 | |
DU | DRNN | 100.00 | 100.00 | 99.99 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 99.99 |
SMOTE-DRNN | 100.00 | 99.99 | 100.00 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 99.99 | |
Norm | DRNN | 100.00 | 91.82 | 100.00 | 95.73 | 0.00 | 100.00 | 100.00 | 95.82 | 95.82 |
SMOTE-DRNN | 100.00 | 95.24 | 99.01 | 97.09 | 0.00 | 100.00 | 99.50 | 97.59 | 97.11 | |
OSF | DRNN | 100.00 | 99.97 | 100.00 | 99.99 | 0.00 | 100.00 | 100.00 | 99.99 | 99.99 |
SMOTE-DRNN | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
SS | DRNN | 100.00 | 100.00 | 99.94 | 99.97 | 0.00 | 100.00 | 99.97 | 100.00 | 99.97 |
SMOTE-DRNN | 100.00 | 99.99 | 99.97 | 99.98 | 0.00 | 100.00 | 99.98 | 100.00 | 99.98 | |
DE | DRNN | 100.00 | N/A * | 0.00 | 0.00 | 0.00 | 100.00 | 50.00 | N/A * | N/A * |
SMOTE-DRNN | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
KL | DRNN | 100.00 | 90.91 | 90.91 | 90.91 | 0.00 | 100.00 | 95.45 | 95.35 | 90.91 |
SMOTE-DRNN | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Model | DDH | DDT | DDU | DH | DT | DU | OSF | SS | DE | KL | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|
RNN [67] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 92.22 | 87.91 | 99.75 | 77.91 | 3 |
SVM [67] | 62.24 | 89.56 | 98.14 | 70.14 | 71.26 | 100.00 | 70.14 | 72.82 | 89.67 | 65.12 | 13 |
RF [67] | 82.26 | 88.28 | 55.26 | 82.20 | 81.77 | 82.99 | 82.20 | 69.82 | 86.55 | 81.56 | 14 |
NB [67] | 50.78 | 78.67 | 78.50 | 68.68 | 65.56 | 100 | 68.68 | 65.21 | 66.55 | 65.62 | 15 |
DNN [68] | 96.62 | 96.22 | 96.12 | 96.70 | 96.63 | 96.53 | 96.14 | 96.43 | 100.00 | 96.76 | 12 |
RNN [68] | 96.56 | 96.65 | 96.67 | 96.87 | 96.77 | 96.76 | 96.76 | 96.87 | 100.00 | 97.00 | 9 |
CNN [68] | 97.01 | 97.00 | 97.01 | 97.51 | 97.11 | 97.11 | 97.00 | 97.10 | 100.00 | 98.10 | 5 |
RBM [68] | 96.54 | 96.51 | 96.52 | 96.80 | 96.57 | 96.56 | 96.30 | 96.30 | 100.00 | 97.11 | 10 |
DBN [68] | 96.72 | 96.60 | 96.62 | 96.91 | 96.72 | 96.83 | 96.61 | 96.60 | 100.00 | 97.66 | 8 |
DBM [68] | 96.21 | 96.08 | 96.11 | 96.99 | 96.33 | 96.65 | 96.08 | 96.07 | 100.00 | 98.22 | 11 |
DAE [68] | 97.99 | 97.71 | 97.99 | 98.41 | 98.00 | 98.03 | 97.72 | 97.71 | 100.00 | 98.33 | 2 |
RDTIDS [69] | 93.17 | 95.84 | 98.66 | 77.47 | 100.00 | 100.00 | 98.16 | 99.47 | 100.00 | 100.00 | 4 |
BLSTM [70] | 99.25 | 99.10 | 99.45 | 99.75 | 99.65 | 99.79 | 92.77 | 92.20 | 96.50 | 89.90 | 7 |
DRNN | 77.45 | 99.96 | 100.00 | 94.78 | 99.99 | 99.99 | 100.00 | 99.94 | 0.00 | 90.91 | 6 |
SMOTE-DRNN | 99.02 | 99.99 | 100.00 | 99.25 | 99.97 | 100.00 | 100.00 | 99.97 | 100.00 | 100.00 | 1 |
Model | Acc. | Prec. | Recall | F1 Score | FPR | NPV | AUC | GM | MCC | (s) | (s) |
---|---|---|---|---|---|---|---|---|---|---|---|
RNN [67] | 99.91 | - | - | - | 1.28 | - | - | - | - | 201.70 | 44.23 |
SVM [67] | - | - | - | - | 2.99 | - | - | - | - | - | - |
RF [67] | - | - | - | - | 4.29 | - | - | - | - | - | - |
NB [67] | - | - | - | - | 3.24 | - | - | - | - | - | - |
DNN [68] | 98.22 | - | - | - | 1.14 | - | - | - | - | 991.60 | - |
RNN [68] | 98.31 | - | - | - | 1.10 | - | - | - | - | 1400.60 | - |
CNN [68] | 98.37 | - | - | - | 1.00 | - | - | - | - | 1367.20 | - |
RBM [68] | 98.28 | - | - | - | 1.13 | - | - | - | - | 2111.90 | - |
DBN [68] | 98.31 | - | - | - | 1.12 | - | - | - | - | 2921.70 | - |
DBM [68] | 98.38 | - | - | - | 1.11 | - | - | - | - | 2800.10 | - |
DAE [68] | 98.39 | - | - | - | 1.11 | - | - | - | - | 2816.20 | - |
RDTIDS [69] | 97.00 | - | - | - | 1.12 | - | - | - | - | 195.50 | 2.27 |
BLSTM [70] | 98.91 | - | - | - | 1.20 | - | - | - | - | 149.60 | 69.10 |
SMOTE-DRNN | 100.00 | 99.50 | 99.75 | 99.62 | 0.00 | 100.00 | 99.87 | 99.74 | 99.62 | 1147.32 | 9.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popoola, S.I.; Adebisi, B.; Ande, R.; Hammoudeh, M.; Anoh, K.; Atayero, A.A. SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks. Sensors 2021, 21, 2985. https://doi.org/10.3390/s21092985
Popoola SI, Adebisi B, Ande R, Hammoudeh M, Anoh K, Atayero AA. SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks. Sensors. 2021; 21(9):2985. https://doi.org/10.3390/s21092985
Chicago/Turabian StylePopoola, Segun I., Bamidele Adebisi, Ruth Ande, Mohammad Hammoudeh, Kelvin Anoh, and Aderemi A. Atayero. 2021. "SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks" Sensors 21, no. 9: 2985. https://doi.org/10.3390/s21092985
APA StylePopoola, S. I., Adebisi, B., Ande, R., Hammoudeh, M., Anoh, K., & Atayero, A. A. (2021). SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks. Sensors, 21(9), 2985. https://doi.org/10.3390/s21092985