An Improved Sensing Method of a Robotic Ultrasound System for Real-Time Force and Angle Calibration
<p>System architecture.</p> "> Figure 2
<p>Structural representation of the flexible thin film pressure sensor.</p> "> Figure 3
<p>Schematic diagrams before and after IMU Euler angle correction: (<b>a</b>) schematic diagram of the Euler angle orientation of the IMU fixed to the robot arm; (<b>b</b>) schematic diagram of the Euler angle orientation of the IMU mapped on the ultrasonic probe after correction.</p> "> Figure 4
<p>(<b>a</b>) Schematic diagram of the sensing structure; (<b>b</b>) schematic diagram of the internal structure.</p> "> Figure 5
<p>Stereogram of the hardware device.</p> "> Figure 6
<p>Schematic diagram of the multi-point diaphragm force-sensing correlation test.</p> "> Figure 7
<p>Linear regression results between the A/D values and testing force (N).</p> "> Figure 8
<p>The different positions of the downforce angle and related force signals.</p> "> Figure 9
<p>(<b>a</b>) Schematic diagram of the fixture structure molds with different clearances; (<b>b</b>) schematic diagram of the phantom test.</p> "> Figure 10
<p>The variance of the measurement angle with different spacer thicknesses.</p> "> Figure 11
<p>(<b>a</b>) Abdominal cavity phantom CT image; (<b>b</b>) 3D modeling by measuring method for liver on a CT image; (<b>c</b>) stereogram of the gel-prepared phantom; (<b>d</b>) phantom ultrasonic image and tumor location.</p> "> Figure 12
<p>(<b>a</b>) Schematic diagram of the phantom test; (<b>b</b>) ultrasonic image test for a liver gel phantom model of the system.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Architecture of the System
2.2. Multichannel Force Sensing
2.3. Architectural Design of the Bilateral IMU
2.4. Novel Sensing Structure Design
2.5. Hardware Design
3. Experimental Design and Results
3.1. Multi-Point Diaphragm Force-Sensing Correlation Test
3.2. Angle Correlation Validation of the Bilateral IMU
3.3. Phantom Test
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakadate, R.; Solis, J.; Takanishi, A.; Sugawara, M.; Niki, K.; Minagawa, E. Development of the ultrasound probe holding robot WTA-1RII and an automated scanning algorithm based on ultrasound image feedback. In ROMANSY 18 Robot Design, Dynamics and Control; Springer: Vienna, Austria, 2010; pp. 359–366. [Google Scholar]
- Harrison, G.; Harris, A. Work-related musculoskeletal disorders in ultrasound: Can you reduce risk? Ultrasound 2015, 23, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freschi, C.; Ferrari, V.; Melfi, F.; Ferrari, M.; Mosca, F.; Cuschieri, A. Technical review of the da Vinci surgical telerobot arms. Int. J. Med. Robot. Comput. Assist. Surg. 2013, 9, 396–406. [Google Scholar] [CrossRef]
- Sutherland, G.R.; Wolfsberger, S.; Lama, S.; Zarei-nia, K. The evolution of neuroArm. Neurosurgery 2013, 72 (Suppl. 1), A27–A32. [Google Scholar] [CrossRef]
- Samei, G.; Tsang, K.; Kesch, C.; Lobo, J.; Hor, S.; Mohareri, O.; Chang, S.; Goldenberg, L.; Black, P.C.; Salcudean, S. A partial augmented reality system with live ultrasound and registered preoperative MRI for guiding robot-assisted radical prostatectomy. Med. Image Anal. 2020, 60, 101588. [Google Scholar] [CrossRef]
- Du, Y.C.; Shih, J.B.; Wu, M.J.; Chiou, C.Y. Development of an AVF Stenosis Assessment Tool for Hemodialysis Patients Using Robotic Ultrasound System. Micromachines 2018, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Oleari, E.; Leporini, A.; Trojaniello, D.; Sanna, A.; Capitanio, U.; Dehó, F.; Larcher, A.; Montorsi, F.; Salonia, A.; Muradore, R. Enhancing surgical process modeling for artificial intelligence development in robotics: The saras case study for minimally invasive procedures. In Proceedings of the 2019 IEEE 13th International Symposium on Medical Information and Communication Technology (ISMICT), Oslo, Norway, 8–10 May 2019; pp. 1–6. [Google Scholar]
- Li, Z.; Kang, Y.; Xiao, Z.; Song, W. Human–robot coordination control of robotic exoskeletons by skill transfers. IEEE Trans. Ind. Electron. 2016, 64, 5171–5181. [Google Scholar] [CrossRef]
- Zinchenko, K.; Wu, C.Y.; Song, K.T. A study on speech recognition control for a surgical robot. IEEE Trans. Ind. Inform. 2016, 13, 607–615. [Google Scholar] [CrossRef]
- Li, G.; Su, H.; Cole, G.A.; Shang, W.; Harrington, K.; Camilo, A.; Pilitsis, J.G.; Fischer, G.S. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 2014, 62, 1077–1088. [Google Scholar]
- Swerdlow, D.R.; Cleary, K.; Wilson, E.; Azizi-Koutenaei, B.; Monfaredi, R. Robotic arm–assisted sonography: Review of technical developments and potential clinical applications. Am. J. Roentgenol. 2017, 208, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.S.B.; Ishii, T.; Matsunaga, Y.; Nakadate, R.; Ishii, H.; Ogawa, K.; Saito, A.; Sugawara, M.; Niki, K.; Takanishi, A. Development of robotic system for autonomous liver screening using ultrasound scanning device. In Proceedings of the 2013 IEEE international conference on robotics and biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 804–809. [Google Scholar]
- Huang, Q.; Lan, J. Remote control of a robotic prosthesis arm with six-degree-of-freedom for ultrasonic scanning and three-dimensional imaging. Biomed. Signal Process. Control 2019, 54, 101606. [Google Scholar] [CrossRef]
- Chen, S.; Wang, F.; Lin, Y.; Shi, Q.; Wang, Y. Ultrasound-guided needle insertion robotic system for percutaneous puncture. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Van Luttervelt, C.A. Toward a resilient manufacturing system. CIRP Ann. 2011, 60, 469–472. [Google Scholar] [CrossRef]
- Adams, S.J.; Burbridge, B.; Obaid, H.; Stoneham, G.; Babyn, P.; Mendez, I. Telerobotic Sonography for Remote Diagnostic Imaging: Narrative Review of Current Developments and Clinical Applications. J. Ultrasound Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Zhou, X.; Shao, F.; Xiong, L.; Hong, J.; Huang, H.; Tong, W.; Wang, J.; Chen, S.; Chen, L.; et al. Feasibility of a 5G-Based Robot-Assisted Remote Ultrasound System for Cardiopulmonary Assessment of Patients with Coronavirus Disease 2019. Chest 2020. [Google Scholar] [CrossRef]
- Tsumura, R.; Hardin, J.W.; Bimbraw, K.; Odusanya, O.S.; Zheng, Y.; Hill, J.C.; Hoffmann, B.; Soboyejo, W.; Zhang, H.K. Tele-operative Robotic Lung Ultrasound Scanning Platform for Triage of COVID-19 Patients. arXiv 2020, arXiv:2010.12335. [Google Scholar]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Piramide, F.; Volpi, G.; Granato, S.; Verri, P.; Manfredi, M.; Bellin, A.; Mottrie, A.; et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA ≥ 10): A new intraoperative tool overcoming the ultrasound guidance. Eur. Urol. 2020, 78, 229–238. [Google Scholar] [CrossRef]
- Fontanelli, G.A.; Buonocore, L.R.; Ficuciello, F.; Villani, L.; Siciliano, B. A novel force sensing integrated into the trocar for minimally invasive robotic surgery. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 131–136. [Google Scholar]
- Yu, L.; Yan, Y.; Yu, X.; Xia, Y. Design and realization of forceps with 3-D force sensing capability for robot-assisted surgical system. IEEE Sens. J. 2018, 18, 8924–8932. [Google Scholar] [CrossRef]
- Li, X.; Kesavadas, T. Surgical robot with environment reconstruction and force feedback. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1861–1866. [Google Scholar]
- McInroe, B.W.; Chen, C.L.; Goldberg, K.Y.; Bajcsy, R.; Fearing, R.S. Towards a soft fingertip with integrated sensing and actuation. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6437–6444. [Google Scholar]
- Cramphorn, L.; Lloyd, J.; Lepora, N.F. Voronoi features for tactile sensing: Direct inference of pressure, shear, and contact locations. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2752–2757. [Google Scholar]
- Zhang, Y.; Zhang, G.; Du, Y.; Wang, M.Y. VTacArm. A Vision-based Tactile Sensing Augmented Robotic Arm with Application to Human-robot Interaction. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 35–42. [Google Scholar]
- Alakhawand, N.; Frier, W.; Freud, K.M.; Georgiou, O.; Lepora, N.F. Sensing Ultrasonic Mid-Air Haptics with a Biomimetic Tactile Fingertip. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications; Springer: Cham, Switzerland, 2020; pp. 362–370. [Google Scholar]
- Toyama, S.; Tanaka, Y.; Shirogane, S.; Nakamura, T.; Umino, T.; Uehara, R.; Okamoto, T.; Igarashi, H. Development of wearable sheet-type shear force sensor and measurement system that is insusceptible to temperature and pressure. Sensors 2017, 17, 1752. [Google Scholar] [CrossRef]
- Uneo Pressure Sensor, GD10-20N Spec Sheet. Available online: http://www.uneotech.com/uneo/online-store/96/gs0001-4-uneo.html (accessed on 16 March 2020).
- Xiloyannis, M.; Galli, L.; Chiaradia, D.; Frisoli, A.; Braghin, F.; Masia, L. A soft tendon-driven robotic glove: Preliminary evaluation. In International Conference on Neurorehabilitation; Springer: Cham, Switzerland, 2018; pp. 329–333. [Google Scholar]
- Mansfield, S.; Rangarajan, S.; Obraczka, K.; Lee, H.; Young, D.; Roy, S. Objective Pressure Injury Risk Assessment Using A Wearable Pressure Sensor. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 1561–1568. [Google Scholar]
- Octopart, MPU-6050. Available online: https://octopart.com/mpu-6050-invensense-19505926?gclid=CjwKCAiAgJWABhArEiwAmNVTB89XRStZacmvsS9k_uGfsrPDFcUTHsO5KUI4UV_wCtCSt8Bvg8kBYRoCo6IQAvD_BwE (accessed on 16 March 2020).
- Ding, Z.Q.; Luo, Z.Q.; Causo, A.; Chen, I.M.; Yue, K.X.; Yeo, S.H.; Ling, K.V. Inertia sensor-based guidance system for upperlimb posture correction. Med. Eng. Phys. 2013, 35, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Wang, C.; Zhang, Y.; Zhou, S. A Novel Ultrasound Probe Spatial Calibration Method Using a Combined Phantom and Stylus. Ultrasound Med. Biol. 2020, 46, 2079–2089. [Google Scholar] [CrossRef] [PubMed]
- Poon, T.C.; Rohling, R.N. Comparison of calibration methods for spatial tracking of a 3-D ultrasound probe. Ultrasound Med. Biol. 2005, 31, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.C.; Shih, C.B.; Fan, S.C.; Lin, H.T.; Chen, P.J. An IMU-compensated skeletal tracking system using Kinect for the upper limb. Microsyst. Technol. 2018, 24, 4317–4327. [Google Scholar] [CrossRef]
- Chen, P.J.; Du, Y.C.; Shih, C.B.; Yang, L.C.; Lin, H.T.; Fan, S.C. Development of an upper limb rehabilitation system using inertial movement units and kinect device. In Proceedings of the 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), Tainan, Taiwan, 12–13 November 2016; pp. 275–278. [Google Scholar]
- Gillies, D.J.; Bax, J.; Barker, K.; Gardi, L.; Tessier, D.; Kakani, N.; Fenster, A. Mechanically assisted 3D ultrasound with geometrically variable imaging for minimally invasive focal liver tumor therapy. In Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling; International Society for Optics and Photonics: San Diego, CA, USA, 2019; Volume 10951, p. 109510Y. [Google Scholar]
- Hu, J.; Zhou, Z.Y.; Ran, H.L.; Yuan, X.C.; Zeng, X.; Zhang, Z.Y. Diagnosis of liver tumors by multimodal ultrasound imaging. Medicine 2020, 99. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.S.; Suardi, N.; Shukri, A.; Ab Razak, N.N.A.N.; Oglat, A.A.; Makhamrah, O.; Mohammad, H. Dynamic Hepatocellular Carcinoma Model Within a Liver Phantom for Multimodality Imaging. Eur. J. Radiol. Open 2020, 7, 100257. [Google Scholar] [CrossRef] [PubMed]
- Harbin, W.P.; Robert, N.J.; Ferrucci, J.T., Jr. Diagnosis of cirrhosis based on regional changes in hepatic morphology: A radiological and pathological analysis. Radiology 1980, 135, 273–283. [Google Scholar] [CrossRef]
- Ilione, T.; Ohagwu, C.C.; Ogolodom, M.P. Computed Tomography evaluation of the Caudate-to-Right Lobe ratio in Patients with Liver Cirrhosis and Subjects with Normal Liver in Benin City, Edo State, Nigeria. Health Sci. J. 2019, 13, 1–7. [Google Scholar]
- da Silva, N.P.B.; Hornung, M.; Beyer, L.P.; Hackl, C.; Brunner, S.; Schlitt, H.J.; Wiggermann, P.; Jung, E.M. Intraoperative shear wave elastography vs. contrast-enhanced ultrasound for the characterization and differentiation of focal liver lesions to optimize liver tumor surgery. Ultraschall Med. Eur. J. Ultrasound 2019, 40, 205–211. [Google Scholar] [CrossRef]
- Gerling, G.J.; Thomas, G.W. Augmented, pulsating tactile feedback facilitates simulator training of clinical breast examinations. Hum. Factors 2005, 47, 670–681. [Google Scholar] [CrossRef]
- Jeon, S.; Choi, S.; Harders, M. Rendering virtual tumors in real tissue mock-ups using haptic augmented reality. IEEE Trans. Haptics 2011, 5, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Sano, H.; Hasegawa, Y.; Tamura, H.; Suzuki, S.S. Effects of forced movements on learning: Findings from a choice reaction time task in rats. Learn. Behav. 2017, 45, 191–204. [Google Scholar] [CrossRef] [Green Version]
Testing Force (N) | 3 N | 5 N | 8 N | 10 N |
---|---|---|---|---|
A/D value (AVG + SD) | 616.6 ± 12.6 | 1003.8 ± 22.2 | 1597.3 ± 47.0 | 2036.1 ± 26.0 |
Output Force (N) (AVG + SD) | 2.96 N ± 0.06 N | 4.82 N ± 0.10 N | 7.67 N ± 0.22 N | 9.78 N ± 0.12 N |
Average Error | 1.2% | 3.7% | 4.2% | 2.2% |
In 28 °C of Room Temperature | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0° | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | |
Success Rate %(AVG ± SD) | 94.8 ± 1.0 | 87.1 ± 1.0 | 83.4 ± 1.4 | 86.2 ± 1.4 | 95.9 ± 0.7 | 88.0 ± 1.5 | 84.0 ± 1.3 | 87.3 ± 1.6 | 94.6 ± 0.8 | 87.8 ± 1.1 | 82.1 ± 1.1 | 87.5 ± 2.1 |
In 20 °C of Room Temperature | ||||||||||||
0° | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | |
Success Rate %(AVG ± SD) | 94.5 ± 1.2 | 86.8 ± 1.4 | 83.5 ± 1.7 | 86.5 ± 1.7 | 94.7 ± 0.9 | 88.2 ± 1.4 | 83.9 ± 1.6 | 87.6 ± 1.6 | 94.3 ± 0.8 | 87.3 ± 1.7 | 82.4 ± 1.4 | 87.4 ± 2.5 |
Spacer | Setting Angle (°) | Average Measurement Angle (°) | Error (°) |
---|---|---|---|
Type A (d = 2.5 mm) | 45° | 46.3° | 1.3° |
90° | 91.2° | 1.2° | |
135° | 136.5° | 1.5° | |
Type B (d = 5.0 mm) | 45° | 47.7° | 2.7° |
90° | 93.1° | 3.1° | |
135° | 137.5° | 2.5° | |
Type C (d = 10.0 mm) | 45° | 49.8° | 4.8° |
90° | 95.9° | 5.9° | |
135° | 139.9° | 4.9° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.-J.; Chen, C.-H.; Chen, J.-J.; Ciou, W.-S.; Xu, C.-B.; Du, Y.-C. An Improved Sensing Method of a Robotic Ultrasound System for Real-Time Force and Angle Calibration. Sensors 2021, 21, 2927. https://doi.org/10.3390/s21092927
Wang K-J, Chen C-H, Chen J-J, Ciou W-S, Xu C-B, Du Y-C. An Improved Sensing Method of a Robotic Ultrasound System for Real-Time Force and Angle Calibration. Sensors. 2021; 21(9):2927. https://doi.org/10.3390/s21092927
Chicago/Turabian StyleWang, Kuan-Ju, Chieh-Hsiao Chen, Jia-Jin (Jason) Chen, Wei-Siang Ciou, Cheng-Bin Xu, and Yi-Chun Du. 2021. "An Improved Sensing Method of a Robotic Ultrasound System for Real-Time Force and Angle Calibration" Sensors 21, no. 9: 2927. https://doi.org/10.3390/s21092927
APA StyleWang, K. -J., Chen, C. -H., Chen, J. -J., Ciou, W. -S., Xu, C. -B., & Du, Y. -C. (2021). An Improved Sensing Method of a Robotic Ultrasound System for Real-Time Force and Angle Calibration. Sensors, 21(9), 2927. https://doi.org/10.3390/s21092927