Gaussian Approach for the Synthesis of Periodic and Aperiodic Antenna Arrays: Method Review and Design Guidelines
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi mathvariant="normal">d</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> obtained by setting BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> and b = 3 in (<a href="#FD3-sensors-21-02343" class="html-disp-formula">3</a>). (<b>b</b>) Corresponding continuous source <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi mathvariant="normal">d</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> obtained by setting BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> and b = 3 in (<a href="#FD3-sensors-21-02343" class="html-disp-formula">3</a>). (<b>d</b>) Corresponding continuous source <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>. As it may be noticed from each pair of figures, the narrower the desired pattern, the wider the continuous source.</p> "> Figure 2
<p>(<b>a</b>) Position synthesis (PS): the interval extrema <math display="inline"><semantics> <msub> <mi>s</mi> <mi>n</mi> </msub> </semantics></math> are evaluated by imposing the equi-area requirement of the density tapering approach. The final positions <math display="inline"><semantics> <msub> <mi>z</mi> <mi>n</mi> </msub> </semantics></math> are the middle points of each interval. (<b>b</b>) Excitation synthesis (ES): each element excitation <math display="inline"><semantics> <msub> <mi>a</mi> <mi>n</mi> </msub> </semantics></math> is evaluated as the area between the <span class="html-italic">z</span>-axis and the graph of <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> in the interval <math display="inline"><semantics> <mrow> <mo>[</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>−</mo> <mi>d</mi> <mo>/</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>+</mo> <mi>d</mi> <mo>/</mo> <mn>2</mn> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>Beamwidth (BW) and sidelobe levels (SLL) as a function of the array aperture. Solid lines refer to PS, dashed lines refer to ES, lines with markers refer to the case b = 100, and lines without markers refer to the case b = 3: (<b>a</b>) desired BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> and (<b>b</b>) desired BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>.</p> "> Figure 4
<p>Dynamic range ratio (DRR) and miminum/maximum interelement distance as a function of the array aperture. Lines with markers refer to the case b = 100, and lines without markers refer to the case b = 3: (<b>a</b>,<b>c</b>) BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, (<b>b</b>,<b>d</b>) BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>.</p> "> Figure 5
<p>Obtained array factor with b = 3. Blue dashed lines refers to PS, and red solid lines refer to ES: (<b>a</b>) desired BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> </mrow> </semantics></math> = 60, (<b>b</b>) desired BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> </mrow> </semantics></math> = 300. The inset in the second subfigure reports a zoom of the main beam and of the first sidelobes.</p> "> Figure 6
<p>Obtained directivity and SLL as a function of the number of elements. Solid lines refer to PS, and dashed lines refer to ES: (<b>a</b>) desired BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, b = 3, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>60</mn> </mrow> </semantics></math>, (<b>b</b>) desired BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, b = 3, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Array factors of the Gaussian approach obtained with b = 3. Blue dashed lines refer to PS, and red solid lines refer to ES: (<b>a</b>) desired BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>60</mn> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>, (<b>b</b>) desired BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>60</mn> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>, (<b>c</b>) desired BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>300</mn> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math>, and (<b>d</b>) desired BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>300</mn> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>1500</mn> </mrow> </semantics></math>. The inset in the last subfigure reports a zoom of the main beam and of the first sidelobes.</p> "> Figure 7 Cont.
<p>Array factors of the Gaussian approach obtained with b = 3. Blue dashed lines refer to PS, and red solid lines refer to ES: (<b>a</b>) desired BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>60</mn> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>, (<b>b</b>) desired BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>60</mn> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>, (<b>c</b>) desired BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>300</mn> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math>, and (<b>d</b>) desired BW = 0.1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>300</mn> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>1500</mn> </mrow> </semantics></math>. The inset in the last subfigure reports a zoom of the main beam and of the first sidelobes.</p> "> Figure 8
<p>Application example. (<b>a</b>) SLL as a function of the number of elements for PS with desired BW = 1<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>, b = 3, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>35</mn> </mrow> </semantics></math>. (<b>b</b>) The red solid line represents the array factor obtained by ES, and the blue dashed line represents the array factor obtained by PS.</p> ">
Abstract
:1. Introduction
2. The Problem and the Gaussian Approach
- First, a Gaussian function may be used to approximate a pencil beam with a desired BW by suitably controlling its standard deviation. More precisely, by denoting with , the desired Gaussian function:
- Second, a Fourier transform relation holds between a continuous linear infinite source and its far-field pattern [40]. Moreover, the Fourier transform of a Gaussian function may be evaluated as another Gaussian function with reciprocal standard deviation (Figure 1).Hence, if in (2) represents the desired far-field pattern, the corresponding continuous source is immediately evaluated as follows:The expression for the continuous infinite source in (4) that exactly produces the pattern in (2) can be successively truncated to a finite length L and processed in order to approximate the array factor in (1). Thanks to the Gaussian nature of , closed-form expressions are obtained in both the PS and the ES problems.
2.1. Position Synthesis—Aperiodic Arrays
2.2. Excitation Synthesis—Periodic Arrays
3. Numerical Investigation
3.1. Aperiodic Arrays
3.2. Periodic Arrays
4. Parametric Analysis
First-Step Design
- Step 1: Use Figure 3a for the BW requirement. The design curves suggest that an array with is sufficient to satisfy the requirement in terms of HPBW for both ES and PS. Go to step 2.
- Step 2: Use again Figure 3a but now for the SLL requirement. The design curves show that the maximum SLL is considerably lower than the required threshold if ES is adopted, but slightly exceeds the threshold if PS is used. Therefore, if ES is suitable for the specific application, go to Step 3; otherwise, go to Step 4.
- Step 3: Use Figure 4a for b = 3 and . The identified point reveals that the DRR of the excitations is approximately 7. If this is acceptable, go to Step 6; otherwise, PS must be adopted. Go to Step 4.
- Step 4: Use Figure 3a for the PS with . The relative curve shows that the maximum SLL is slightly higher than the required −20 dB, but the SLL constraint and the BW one are both satisfied when . Go to Step 5.
- Step 5: Minimize the number N of elements for the PS with BW = 1, b = 3 and by plotting the required curve in Figure 8a, which as outlined at the beginning of this subsection, requires a low computational time (just 16 ms of CPU time using a commercial personal laptop in this case). This novel curve suggests that elements allows one to meet the SLL requirement. Go to Step 7.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, G.; Huang, Y.; Wang, F.; Liu, J.; Wang, Q. 5G features from operation perspective and fundamental performance validation by field trial. China Commun. 2018, 15, 51–61. [Google Scholar] [CrossRef]
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G evolution: A view on 5G cellular technology beyond 3GPP Release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Babich, F.; Comisso, M. Multi-packet communication in heterogeneous wireless networks adopting spatial reuse: Capture analysis. IEEE Trans. Wirel. Commun. 2013, 12, 5346–5359. [Google Scholar] [CrossRef]
- Guey, J.C.; Liao, P.K.; Chen, Y.S.; Hsu, A.; Hwang, C.H.; Lin, G. On 5G radio access architecture and technology [Industry Perspectives]. IEEE Wirel. Commun. 2015, 22, 2–5. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Babich, F.; Comisso, M.; Dorni, A. A novel SIR-based access scheme for multi-packet communication in 802.11 networks. In Proceedings of the IEEE International Conference on Communications, Ottawa, ON, Canada, 10–15 June 2012; pp. 4494–4498. [Google Scholar]
- Hansen, R.C. Linear arrays. In The Handbook of Antenna Design; Rudge, A.W., Milne, K., Olver, A.D., Knight, P., Eds.; Peregrinus: London, UK, 1983; Chapter 9; pp. 104–109. [Google Scholar]
- Khodier, M. Comprehensive study of linear antenna array optimisation using the cuckoo search algorithm. IET Microwaves Antennas Propag. 2019, 13, 1325–1333. [Google Scholar] [CrossRef]
- Varum, T.; Matos, J.N.; Pinho, P.; Abreu, R. Nonuniform broadband circularly polarized antenna array for vehicular communications. IEEE Trans. Veh. Technol. 2016, 65, 7219–7227. [Google Scholar] [CrossRef]
- Stanley, M.; Huang, Y.; Loh, T.; Xu, Q.; Wang, H.; Zhou, H. A high gain steerable millimeter-wave antenna array for 5G smartphone applications. In Proceedings of the 2017 11th European Conference on Antennas and Propagation, EUCAP 2017, Paris, France, 19–24 March 2017; pp. 1311–1314. [Google Scholar]
- Zhang, J.; Zhang, S.; Lin, X.; Fan, Y.; Pedersen, G. 3D radiation pattern reconfigurable phased array for transmission angle sensing in 5G mobile communication. Sensors 2018, 18, 4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comisso, M.; Buttazzoni, G.; Vescovo, R. Reconfigurable antenna arrays with multiple requirements: A versatile 3D approach. Int. J. Antennas Propag. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Abd-Alhameed, R.A. Design of multi-mode antenna array for use in next-generation mobile handsets. Sensors 2020, 20, 2447. [Google Scholar] [CrossRef]
- Al-Amoodi, K.; Honari, M.M.; Mirzavand, R.; Melzer, J.; Elliott, D.G.; Mousavi, P. Circularly-polarised end-fire antenna and arrays for 5G millimetre-wave beam-steering systems. IET Microwaves Antennas Propag. 2020. [Google Scholar] [CrossRef]
- Li, H.; Cheng, Y.; Ling, Z. Design of distributed and robust millimeter-wave antennas for 5G communication terminals. IEEE Access 2020, 8, 133420–133429. [Google Scholar] [CrossRef]
- Hu, H.N.; Lai, F.P.; Chen, Y.S. Dual-band dual-polarized scalable antenna subarray for compact millimeter-wave 5G base stations. IEEE Access 2020, 8, 129180–129192. [Google Scholar] [CrossRef]
- Piao, H.; Jin, Y.; Qu, L. A compact and straightforward self-decoupled MIMO antenna system for 5G applications. IEEE Access 2020, 8, 129236–129245. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Shukla, P.; See, C.H.; Abd-Alhameed, R.; Falcone, F.; Limiti, E. Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications. Prog. Electromagn. Res. Lett. 2018, 75, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Virdee, B.; Shukla, P.; See, C.; Abd-Alhameed, R.; Khalily, M.; Falcone, F.; Limiti, E. Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays. Electronics 2018, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Virdee, B.S.; Shukla, P.; See, C.H.; Abd-Alhameed, R.; Khalily, M.; Falcone, F.; Limiti, E. Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars. Radio Sci. 2018, 53, 1368–1381. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Khalily, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Limiti, E. Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access 2019, 7, 23606–23614. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Khalily, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Limiti, E. Mutual-coupling isolation using embedded metamaterial em bandgap decoupling slab for densely packed array antennas. IEEE Access 2019, 7, 51827–51840. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with ±30∘ frequency beam-scanning capability at millimetre-waves. Electronics 2019, 8, 642. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems. Radio Sci. 2019, 54, 1067–1075. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Parchin, N.O.; Shukla, P.; Quazzane, K.; See, C.H.; Abd-Alhameed, R.; Falcone, F.; Limiti, E. Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems. IET Microwaves Antennas Propag. 2019. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Limiti, E. Study on isolation and radiation behaviours of a 34 × 34 array-antennas based on SIW and metasurface properties for applications in Terahertz band over 125–300 GHz. Optik 2020, 206, 163222. [Google Scholar] [CrossRef] [Green Version]
- Stant, L.T.; Aaen, P.H.; Ridler, N.M. Evaluating residual errors in waveguide network analysers from microwave to submillimetre-wave frequencies. In Proceedings of the IET Colloquium on Millimetre-Wave and Terahertz Engineering and Technology 2016, London, UK, 31 March 2016; pp. 1–2. [Google Scholar]
- Iqbal, A.; Saraereh, O.A.; Ahmad, A.W.; Bashir, S. Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access 2017, 6, 2755–2759. [Google Scholar] [CrossRef]
- Iqbal, A.; Tiang, J.J.; Lee, C.K.; Lee, B.M. Tunable substrate integrated waveguide diplexer with high isolation and wide stopband. IEEE Microw. Wirel. Components Lett. 2019, 29, 456–458. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Al-Rizzo, H. Beamforming optimization in Internet of Things applications using robust swarm algorithm in conjunction with connectable and collaborative sensors. Sensors 2020, 20, 2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultan, K.; Abdullah, H.; Abdallah, E.; El-Hennawy, H. MOM/GA-based virtual array for radar systems. Sensors 2020, 20, 713. [Google Scholar] [CrossRef] [Green Version]
- Buttazzoni, G.; Vescovo, R. Density tapering of linear arrays radiating pencil beams: A new extremely fast Gaussian approach. IEEE Trans. Antennas Propag. 2017, 65, 7372–7377. [Google Scholar] [CrossRef]
- Buttazzoni, G.; Vescovo, R. Fast 3D synthesis of aperiodic rectangular arrays. In Proceedings of the IEEE AP-S/URSI 2018, Boston, MA, USA, 8–13 July 2018; pp. 2115–2116. [Google Scholar]
- Buttazzoni, G.; Vescovo, R. A synthesis technique for the beam scanning with aperiodic arrays. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP 2019), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Buttazzoni, G.; Vescovo, R. Gaussian approach versus Dolph-Chebyshev synthesis of pencil beams for linear antenna arrays. Electron. Lett. 2018, 54, 8–10. [Google Scholar] [CrossRef]
- Buttazzoni, G.; Babich, F.; Vatta, F.; Comisso, M. Low-complexity phase-only scanning by aperiodic antenna arrays. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 966–970. [Google Scholar] [CrossRef]
- Khalily, M.; Tafazolli, R.; Xiao, P.; Kishk, A.A. Broadband mm-wave microstrip array antenna with improved radiation characteristics for different 5G applications. IEEE Trans. Antennas Propag. 2018, 66, 4641–4647. [Google Scholar] [CrossRef]
- Syrytsin, I.; Zhang, S.; Pedersen, G.F.; Morris, A.S. Compact quad-mode planar phased array with wideband for 5G mobile terminals. IEEE Trans. Antennas Propag. 2018, 66, 4648–4657. [Google Scholar] [CrossRef] [Green Version]
- Faisal, S.H.; Saleem, S.; Shahid, S.; Saeed, S. 5G linear array for millimeter wave mobile communication in ultra dense networks (UDNs). In Proceedings of the 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 24–25 July 2019; pp. 1–5. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley Interscience: Hoboken, NJ, USA, 2005; p. 1117. [Google Scholar]
- Kurup, D.; Himdi, M.; Rydberg, A. Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm. IEEE Trans. Antennas Propag. 2003, 51, 2210–2217. [Google Scholar] [CrossRef]
- Quevedo-Teruel, O.; Rajo-Iglesias, E. Ant colony optimization for array synthesis. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006; pp. 3301–3304. [Google Scholar]
- Rajo-Iglesias, E.; Quevedo-Teruel, O. Linear array synthesis using an ant-colony-optimization-based algorithm. IEEE Antennas Propag. Mag. 2007, 49, 70–79. [Google Scholar] [CrossRef]
- Jin, N.; Rahmat-Samii, Y. Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antennas Propag. 2007, 55, 556–567. [Google Scholar] [CrossRef]
- Bucci, O.M.; D’Urso, M.; Isernia, T.; Angeletti, P.; Toso, G. Deterministic synthesis of uniform amplitude sparse arrays via new density taper techniques. IEEE Trans. Antennas Propag. 2010, 58, 1949–1958. [Google Scholar] [CrossRef]
- Caratelli, D.; Vigano, M.C. A novel deterministic synthesis technique for constrained sparse array design problems. IEEE Trans. Antennas Propag. 2011, 59, 4085–4093. [Google Scholar] [CrossRef]
- Fuchs, B.; Skrivervik, A.; Mosig, J.R. Synthesis of uniform amplitude focused beam arrays. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1178–1181. [Google Scholar] [CrossRef]
- Willey, R. Space tapering of linear and planar arrays. IRE Trans. Antennas Propag. 1962, 10, 369–377. [Google Scholar] [CrossRef]
- Khodier, M.; Christodoulou, C. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propag. 2005, 53, 2674–2679. [Google Scholar] [CrossRef]
- Preetham Kumar, B.; Branner, G. Synthesis of unequally spaced linear arrays by Legendre series expansion. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1997, Digest, Montreal, QC, Canada, 13–18 July 1997; pp. 2236–2239. [Google Scholar]
- Dolph, C.L. A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level. Proc. IRE 1946, 34, 335–348. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buttazzoni, G.; Babich, F.; Pastore, S.; Vatta, F.; Comisso, M. Gaussian Approach for the Synthesis of Periodic and Aperiodic Antenna Arrays: Method Review and Design Guidelines. Sensors 2021, 21, 2343. https://doi.org/10.3390/s21072343
Buttazzoni G, Babich F, Pastore S, Vatta F, Comisso M. Gaussian Approach for the Synthesis of Periodic and Aperiodic Antenna Arrays: Method Review and Design Guidelines. Sensors. 2021; 21(7):2343. https://doi.org/10.3390/s21072343
Chicago/Turabian StyleButtazzoni, Giulia, Fulvio Babich, Stefano Pastore, Francesca Vatta, and Massimiliano Comisso. 2021. "Gaussian Approach for the Synthesis of Periodic and Aperiodic Antenna Arrays: Method Review and Design Guidelines" Sensors 21, no. 7: 2343. https://doi.org/10.3390/s21072343
APA StyleButtazzoni, G., Babich, F., Pastore, S., Vatta, F., & Comisso, M. (2021). Gaussian Approach for the Synthesis of Periodic and Aperiodic Antenna Arrays: Method Review and Design Guidelines. Sensors, 21(7), 2343. https://doi.org/10.3390/s21072343