mmWave High Gain Planar H-Shaped Shorted Ring Antenna Array
<p>Reflection coefficient and directivity behaviors for (<b>a</b>) different types of planar patches and (<b>b</b>) a proposed slot-loaded patch with a shorting pin.</p> "> Figure 1 Cont.
<p>Reflection coefficient and directivity behaviors for (<b>a</b>) different types of planar patches and (<b>b</b>) a proposed slot-loaded patch with a shorting pin.</p> "> Figure 2
<p>Proposed antenna structure with (<b>a</b>) multi-layer information and (<b>b</b>) layer 1 and layer 2.</p> "> Figure 3
<p>Proposed antenna structure with impedance variation according to Cx value.</p> "> Figure 4
<p>Simulated results for (<b>a</b>) reflection coefficient and maximum directivity according to Cx values, and (<b>b</b>) radiation patterns of the proposed and conventional patch antennas.</p> "> Figure 4 Cont.
<p>Simulated results for (<b>a</b>) reflection coefficient and maximum directivity according to Cx values, and (<b>b</b>) radiation patterns of the proposed and conventional patch antennas.</p> "> Figure 5
<p>Proposed 2 × 2 array antenna with (<b>a</b>) multi-layer view and (<b>b</b>) surface current on array elements synchronization by a guide-ring.</p> "> Figure 6
<p>Implementation of the proposed 2 × 2 array antenna with (<b>a</b>) fabrication photo and (<b>b</b>) simulated and measured reflection coefficients.</p> "> Figure 7
<p>Simulated and measured radiation patterns of the proposed 2 × 2 array antenna in (<b>a</b>) xz-plane and (<b>b</b>) yz-plane at 28 GHz.</p> ">
Abstract
:1. Introduction
2. Analysis of the Proposed Antenna Array
3. Fabrication of the Proposed Antenna and Measured Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Q.; Zhang, X.; Wang, N.; Bai, X.; Li, J.; Zhao, X. Cavity-Backed Circularly Polarized Self-Phased Four-Loop Antenna for Gain Enhancement. IEEE Trans. Antennas Propag. 2011, 59, 685–688. [Google Scholar] [CrossRef]
- Bayderkhani, R.; Forooraghi, K.; Abbasi-Arand, B. Gain-Enhanced SIW Cavity-Backed Slot Antenna with Arbitrary Levels of Inclined Polarization. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 931–934. [Google Scholar] [CrossRef]
- Wei, J.; Jiang, X.; Peng, L. Ultrawideband and High-Gain Circularly Polarized Antenna with Double-Y-Shape Slot. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1508–1511. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, B.; Liu, A.; Yu, T.; Guo, D.; Wei, Y. Broadband High-Gain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1470–1473. [Google Scholar]
- Liu, Y.; Liu, H.; Wei, M.; Gong, S. A Novel Slot Yagi-Like Multilayered Antenna with High Gain and Large Bandwidth. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 790–793. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.-F.; Chen, L.; Li, W.-T.; Shi, X.-W. Gain Enhancement for Broadband Vertical Planar Printed Antenna With H-Shaped Resonator Structures. IEEE Antennas Wirel. Propag. Lett. 2014, 62, 4411–4415. [Google Scholar] [CrossRef]
- Ali, I.; Jamaluddin, M.H.; Gaya, A.; Rahim, H.A. A Dielectric Resonator Antenna with Enhanced Gain and Bandwidth for 5G Applications. Sensors 2020, 20, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarin, V.P.; Nishamol, M.S.; Tony, D.; Aanandan, C.K.; Mohanan, P.; Vasudevan, K. A Wideband Stacked Offset Microstrip Antenna with Improved Gain and Low Cross Polarization. IEEE Antennas Wirel. Propag. Lett. 2011, 59, 1376–1379. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Duan, W.; Pan, Y.-M. High-Gain Filtering Patch Antenna Without Extra Circuit. IEEE Antennas Wirel. Propag. Lett. 2015, 63, 5883–5888. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, J. Investigation of a Via-Loaded Microstrip Magnetic Dipole Antenna with Enhanced Bandwidth and Gain. IEEE Trans. Antennas Propag. 2019, 67, 4836–4841. [Google Scholar] [CrossRef]
- Li, Q.; Chen, X.; Hu, X. An Optically Transparent Metasurface-Based Resonant Cavity Fed by Patch Antenna for Improved Gain. Materials 2019, 12, 3805. [Google Scholar] [CrossRef] [Green Version]
- Losito, O.; Portosi, V.; Venanzoni, G.; Bigelli, F.; Mencarelli, D.; Scalmati, P.; Renghini, C.; Carta, P.; Prudenzano, F. Feasibility Investigation of SIW Cavity-Backed Patch Antenna Array for Ku Band Applications. Appl. Sci. 2019, 9, 1271. [Google Scholar] [CrossRef] [Green Version]
- Goudarzi, A.; Honari, M.M.; Mirzavand, R. Resonant Cavity Antennas for 5G Communication Systems: A Review. Electronics 2020, 9, 1080. [Google Scholar] [CrossRef]
- So, K.K.; Luk, K.M.; Chan, C.H.; Chan, K.F. 3D Printed High Gain Complementary Dipole/Slot Antenna Array. Appl. Sci. 2018, 8, 1410. [Google Scholar] [CrossRef] [Green Version]
- Parchin, N.O.; Alibakhshikenari, M.; Basherlou, H.J.; Abd-Alhameed, R.A.; Rodriguez, J.; Limiti, E. MM-Wave Phased Array Quasi-Yagi Antenna for the Upcoming 5G Cellular Communications. Appl. Sci. 2019, 9, 978. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Ray, K.P. Broadband Microstrip Antennas; Artech House: Boston, MA, USA, 2003. [Google Scholar]
- Garg, R.; Bhartia, P.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House: Boston, MA, USA, 2001. [Google Scholar]
Reference | Polarization | Topology | Cent. Freq. (GHz) | BW (%) | Gain (dBi) |
---|---|---|---|---|---|
[2] | Linear (slant) | Cavity-backed | 10.1 | 1.0 | 6.9 |
[3] | Circular | Slot | 5.2 | 49.8 | 8.5 |
[4] | Linear | I-Shaped resonator | 7.8 | 47.7 | 9.5 |
[5] | Linear | Slot | 4.2 | 27.8 | 12.2 |
[6] | Linear | H-shaped resonator | 3 | 51.9 | 9.7 |
[7] | Linear | Dielectric resonator | 15 | 16.1 | 10.4 |
[8] | Linear | Stacked | 5.73 | 34.9 | 8.07 |
[9] | Linear | Slot + stacked | 2.4 | 19.6 | 9.7 |
[10] | Linear | Via-loaded | 10.3 | 9.1 | 10.2 |
[11] | Linear | Metasurface | 5.6 | 2.5 | 12.2 |
[12] | Linear | Cavity-backed | 11.7 | 21.4 | 10.0 * |
[15] | Linear | Qausi-yagi | 26 | 7.7 | 8.31 ** |
This work | Linear | Shorted ring + slot | 28 | 2.3 | 12.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Kim, Y.-B.; Lee, H.L. mmWave High Gain Planar H-Shaped Shorted Ring Antenna Array. Sensors 2020, 20, 5168. https://doi.org/10.3390/s20185168
Kim Y-J, Kim Y-B, Lee HL. mmWave High Gain Planar H-Shaped Shorted Ring Antenna Array. Sensors. 2020; 20(18):5168. https://doi.org/10.3390/s20185168
Chicago/Turabian StyleKim, Young-Jun, Ye-Bon Kim, and Han Lim Lee. 2020. "mmWave High Gain Planar H-Shaped Shorted Ring Antenna Array" Sensors 20, no. 18: 5168. https://doi.org/10.3390/s20185168
APA StyleKim, Y.-J., Kim, Y.-B., & Lee, H. L. (2020). mmWave High Gain Planar H-Shaped Shorted Ring Antenna Array. Sensors, 20(18), 5168. https://doi.org/10.3390/s20185168