Application of WGM Resonances to the Measurement of the Temperature Increment of Ho and Ho-Yb Doped Optical Fibers Pumped at 1125 and 975 nm
<p>Simplified diagram of the energy levels of (<b>a</b>) Yb<sup>3+</sup> and (<b>b</b>) Ho<sup>3+</sup> ions, as well as the processes involved to generate lasing beyond 2 μm with pump signals at 975 and 1125 nm</p> "> Figure 2
<p>Scheme of the experimental setup employed to characterize the temperature increment by means of the whispering gallery modes (WGMs). PD, photodiode; PC, polarization controller.</p> "> Figure 3
<p>(<b>a</b>) Transmission trace of a typical WGM resonance (inset: radial profile of a fundamental mode of a WGM resonance (<math display="inline"><semantics> <mrow> <mi>l</mi> <mo> </mo> <mo>=</mo> <mo> </mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo> </mo> <mo>=</mo> <mo> </mo> <mn>354</mn> </mrow> </semantics></math>); (<b>b</b>) illustrative example of the wavelength shift suffered by the resonances for a temperature increment of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>T</mi> <mo> </mo> <mo>=</mo> <mo> </mo> <mn>0.5</mn> </mrow> </semantics></math><math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C.</p> "> Figure 4
<p>Measurement of the temperature increment of Holmium Doped Fiber 1 (HDF1) and HDF2 as a function of the pump signal power. Pump wavelength centered at <math display="inline"><semantics> <mrow> <mn>1125</mn> <mspace width="0.166667em"/> </mrow> </semantics></math>nm.</p> "> Figure 5
<p>Temperature increment of the ytterbium-holmium codoped fiber (YHDF) as function of the pump signal at two different wavelengths: (<b>a</b>) at <math display="inline"><semantics> <mrow> <mn>1125</mn> <mspace width="0.166667em"/> </mrow> </semantics></math>nm; (<b>b</b>) at <math display="inline"><semantics> <mrow> <mn>975</mn> <mspace width="0.166667em"/> </mrow> </semantics></math>nm. Circles and curves show experimental points and fits, respectively.</p> ">
Abstract
:1. Introduction
2. Theoretical Description
2.1. WGM Thermal Sensitivity
2.2. Energy Level Diagram of the Yb/Ho Codoped Fibers
3. Experimental Procedure
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sumetsky, M.; Dulashko, Y. Radius variation of optical fibers with angstrom accuracy. Opt. Lett. 2010, 35, 4006. [Google Scholar] [CrossRef]
- Birks, T.A.; Knight, J.C.; Dimmick, T.E. High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment. IEEE Photonics Technol. Lett. 2000, 12, 182–183. [Google Scholar] [CrossRef]
- Roselló-Mechó, X.; Delgado-Pinar, M.; Díez, A.; Andrés, M.V. Measurement of Pockels’ coefficients and demonstration of the anisotropy of the elasto-optic effect in optical fibers under axial strain. Opt. Lett. 2016, 41, 2934. [Google Scholar] [CrossRef]
- Guan, G.; Arnold, S.; Otugen, M.V. Temperature Measurements Using a Microoptical Sensor Based on Whispering Gallery Modes. AIAA J. 2006, 44, 2385–2389. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Rossmann, T.; Guo, Z. Temperature sensitivity of silica micro-resonators. J. Phys. D Appl. Phys. 2008, 41, 245111. [Google Scholar] [CrossRef]
- Rivera-Perez, E.; Villegas, I.L.; Diez, A.; Andres, M.V.; Cruz, J.L.; Rodriguez-Cobos, A. Measurement of Pump-Induced Temperature Increase in Doped Fibers Using Whispering-Gallery Modes. IEEE Photonics Technol. Lett. 2013, 25, 2498–2500. [Google Scholar] [CrossRef]
- Delgado-Pinar, M.; Villegas, I.L.; Díez, A.; Cruz, J.L.; Andrés, M.V. Measurement of temperature profile induced by the optical signal in fiber Bragg gratings using whispering-gallery modes. Opt. Lett. 2014, 39, 6277. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Mechó, X.; Delgado-Pinar, M.; Cruz, J.L.; Díez, A.; Andrés, M.V. Measurement of UV-induced absorption and scattering losses in photosensitive fibers. Opt. Lett. 2018, 43, 2897. [Google Scholar] [CrossRef]
- Kersey, A.; Berkoff, T. Fiber-optic Bragg-grating differential-temperature sensor. IEEE Photonics Technol. Lett. 1992, 4, 1183–1185. [Google Scholar] [CrossRef]
- Kou, J.L.; Feng, J.; Ye, L.; Xu, F.; Lu, Y.Q. Miniaturized fiber taper reflective interferometer for high temperature measurement. Opt. Express 2010, 18, 14245. [Google Scholar] [CrossRef] [Green Version]
- Monzon-Hernandez, D.; Minkovich, V.; Villatoro, J. High-temperature sensing with tapers made of microstructured optical fiber. IEEE Photonics Technol. Lett. 2006, 18, 511–513. [Google Scholar] [CrossRef]
- Davis, M.; Digonnet, M. Measurements of thermal effects in fibers doped with cobalt and vanadium. J. Light. Technol. 2000, 18, 161–165. [Google Scholar] [CrossRef]
- Coscetta, A.; Catalano, E.; Cerri, E.; Zeni, L.; Minardo, A. A Dual-Wavelength Scheme for Brillouin Temperature Sensing in Optically Heated Co2x-Doped Fibers. IEEE Sens. J. 2020, 20, 1349–1354. [Google Scholar] [CrossRef]
- Zervas, M.; Codemard, C. High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Dragic, P.D.; Cavillon, M.; Ballato, J. Materials for optical fiber lasers: A review. Appl. Phys. Rev. 2018, 5, 041301. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives. J. Opt. Soc. Am. B 2010, 27, B63. [Google Scholar] [CrossRef]
- Nufern, B.S.; Dong, L. Fiber lasers. In Handbook of Solid-State Lasers; Elsevier: Amsterdam, The Netherlands, 2013; pp. 403–462. [Google Scholar]
- Kurkov, A.; Dianov, E.; Medvedkov, O.; Ivanov, G.; Aksenov, V.; Paramonov, V.; Vasiliev, S.; Pershina, E. Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm. Electron. Lett. 2000, 36, 1015. [Google Scholar] [CrossRef]
- Jackson, S. Midinfrared Holmium Fiber Lasers. IEEE J. Quantum Electron. 2006, 42, 187–191. [Google Scholar] [CrossRef]
- Friebele, E.J.; Askins, C.G.; Peele, J.R.; Wright, B.M.; Condon, N.J.; O’Connor, S.; Brown, C.G.; Bowman, S.R. Ho doped fiber for high energy laser applications. In Fiber Lasers XI: Technology, Systems, and Applications; Ramachandran, S., Ed.; SPIE: Bellingham, WA, USA, 2014. [Google Scholar]
- Jackson, S.D.; Bugge, F.; Erbert, G. Directly diode-pumped holmium fiber lasers. Opt. Lett. 2007, 32, 2496. [Google Scholar] [CrossRef]
- Kurkov, A.S.; Dvoyrin, V.V.; Marakulin, A.V. All-fiber 10 W holmium lasers pumped at λ = 1.15 μm. Opt. Lett. 2010, 35, 490. [Google Scholar] [CrossRef]
- Hemming, A.; Bennetts, S.; Simakov, N.; Davidson, A.; Haub, J.; Carter, A. High power operation of cladding pumped holmium doped silica fibre lasers. Opt. Express 2013, 21, 4560. [Google Scholar] [CrossRef] [PubMed]
- Kir’yanov, A.V.; Minkovich, V.P.; Barmenkov, Y.O. All-Fiber 2.05-μm Continuous-Wave Ytterbium-Holmium Laser Pumped at 1.064 μm. IEEE Photonics Technol. Lett. 2014, 26, 1924–1927. [Google Scholar] [CrossRef]
- Żmojda, J.; Dorosz, D.; Kochanowicz, M.; Miluski, P.; Dorosz, J. Yb3+/Ho3+-codoped antimony-silicate optical Fiber. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2012; Romaniuk, R.S., Ed.; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
- Kir’yanov, A.V.; Barmenkov, Y.O.; Minkovich, V.P.; Andres, M.V. Nonlinear transmission coefficient of ytterbium-holmium fiber at the wavelength 978 nm. Laser Phys. 2007, 17, 71–79. [Google Scholar] [CrossRef]
- Kir’yanov, A.V.; Barmenkov, Y.O.; Villegas-Garcia, I.L.; Cruz, J.L.; Andres, M.V. Highly Efficient Holmium-Doped All-Fiber ∼2.07-μm Laser Pumped by Ytterbium-Doped Fiber Laser at ∼1.13 μm. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Sumetsky, M. Mode localization and the Q-factor of a cylindrical microresonator. Opt. Lett. 2010, 35, 2385. [Google Scholar] [CrossRef]
- Roselló-Mechó, X. Whispering Gallery Modes: Advanced Photonic Applications. Ph.D. Thesis, University of Valencia, Valencia, Spain, 2019. [Google Scholar]
- Kir’yanov, A.V.; Barmenkov, Y.O.; Garcia, I.V. 2.05 μm holmium doped all-fiber laser diode-pumped at 1.125 μm. Laser Phys. 2017, 27, 085101. [Google Scholar] [CrossRef]
- Kamrádek, M.; Aubrecht, J.; Peterka, P.; Podrazký, O.; Honzátko, P.; Cajzl, J.; Mrázek, J.; Kubeček, V.; Kašík, I. Spectroscopic characterization of holmium doped optical fibers for fiber lasers. In Micro-Structured and Specialty Optical Fibres VI; Peterka, P., Kalli, K., Mendez, A., Eds.; SPIE: Bellingham, WA, USA, 2019. [Google Scholar]
- Kamrádek, M.; Kašík, I.; Aubrecht, J.; Mrázek, J.; Podrazký, O.; Cajzl, J.; Varák, P.; Kubeček, V.; Peterka, P.; Honzátko, P. Holmium doped optical fibers for efficient fiber lasers. In Micro-Structured and Specialty Optical Fibres VI; Bunge, C.A., Kalli, K., Peterka, P., Eds.; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Knight, J.C.; Cheung, G.; Jacques, F.; Birks, T.A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 1997, 22, 1129. [Google Scholar] [CrossRef] [Green Version]
- Kenny, R.; Birks, T.; Oakley, K. Control of optical fibre taper shape. Electron. Lett. 1991, 27, 1654. [Google Scholar] [CrossRef]
- Wait, J.R. Electromagnetic Whispering Gallery Modes in a Dielectric Rod. Radio Sci. 1967, 2, 1005–1017. [Google Scholar] [CrossRef]
- Davis, M.; Digonnet, M.; Pantell, R. Thermal effects in doped fibers. J. Light. Technol. 1998, 16, 1013–1023. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roselló-Mechó, X.; Delgado-Pinar, M.; Barmenkov, Y.O.; Kir’yanov, A.V.; Andrés, M.V. Application of WGM Resonances to the Measurement of the Temperature Increment of Ho and Ho-Yb Doped Optical Fibers Pumped at 1125 and 975 nm. Sensors 2021, 21, 2094. https://doi.org/10.3390/s21062094
Roselló-Mechó X, Delgado-Pinar M, Barmenkov YO, Kir’yanov AV, Andrés MV. Application of WGM Resonances to the Measurement of the Temperature Increment of Ho and Ho-Yb Doped Optical Fibers Pumped at 1125 and 975 nm. Sensors. 2021; 21(6):2094. https://doi.org/10.3390/s21062094
Chicago/Turabian StyleRoselló-Mechó, Xavier, Martina Delgado-Pinar, Yuri O. Barmenkov, Alexander V. Kir’yanov, and Miguel V. Andrés. 2021. "Application of WGM Resonances to the Measurement of the Temperature Increment of Ho and Ho-Yb Doped Optical Fibers Pumped at 1125 and 975 nm" Sensors 21, no. 6: 2094. https://doi.org/10.3390/s21062094
APA StyleRoselló-Mechó, X., Delgado-Pinar, M., Barmenkov, Y. O., Kir’yanov, A. V., & Andrés, M. V. (2021). Application of WGM Resonances to the Measurement of the Temperature Increment of Ho and Ho-Yb Doped Optical Fibers Pumped at 1125 and 975 nm. Sensors, 21(6), 2094. https://doi.org/10.3390/s21062094