Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor
<p>Photos of optical sensitive layer. (<b>a</b>) The lens with sensitive layer (used in the cultivation). (<b>b</b>) Scanning electron microscopy photo of cross-section of this sensitive layer.</p> "> Figure 2
<p>Feedback regulation system. 1. container with buffer or concentrated glucose solution, 2. bioreactor Applicon (5 L), 3. optical fibres, 4. lens with sensitive layer, 5. light source and the detector (<span class="html-italic">λ<sub>EX</sub></span> = 470 nm, <span class="html-italic">λ<sub>EM</sub></span> = 580 nm), 6. PC LabView, 7. control unit, 8. peristaltic pump, 9. temperature probe of NeoFox.</p> "> Figure 3
<p>Time record of the feedback regulation of lower glucose concentration (dilution with buffer) for three independent experiments at the same conditions (I.-III.). After the initial three <span class="html-italic">t<sub>chec</sub></span> (position 1), the concentration of glucose was increased from <span class="html-italic">c<sub>GL</sub><sup>DES</sup></span> = 0.4 mM to <span class="html-italic">c<sub>GL</sub><sup>MAX</sup></span> = 0.5 mM by hand pipetting of concentrated glucose solution into the bioreactor (position 2). After <span class="html-italic">c<sub>GL</sub><sup>MAX</sup></span> detection, the pump of feedback loop dosed buffer into the reactor (position 3). <span class="html-italic">t<sub>1</sub></span> is time when actual measured glucose concentration exceeded glucose concentration after regulation for 10% and <span class="html-italic">t<sub>2</sub></span> is time when buffer was added.</p> "> Figure 4
<p>Time record of the feedback regulation of lower glucose concentration (dilution with buffer, test IV). After the initial three <span class="html-italic">t<sub>chec</sub></span> (position 1), the concentration of glucose increased from <span class="html-italic">c<sub>GL</sub><sup>DES</sup></span> = 0.100 mM to <span class="html-italic">c<sub>GL</sub><sup>MAX</sup></span> = 0.125 mM by hand pipetting of concentrated glucose solution into the bioreactor (position 2). After <span class="html-italic">c<sub>GL</sub><sup>MAX</sup></span> detection, the pump of feedback loop dosed buffer into the reactor (position 3). <span class="html-italic">t<sub>1</sub></span> is the time when actual measured glucose concentration exceeded glucose concentration after regulation for 10% and <span class="html-italic">t<sub>2</sub></span> is time when buffer was added.</p> "> Figure 5
<p>Time record of glucose concentration during fed-batch cultivation of <span class="html-italic">Saccharomyces cerevisiae</span>. After two-point calibration (<span class="html-italic">c<sub>GL</sub><sup>DES</sup></span> = 3.5 mM, <span class="html-italic">c<sub>GL</sub><sup>MIN</sup></span> = 2 mM), glucose was added to complete YPG medium (<span class="html-italic">c<sub>GL</sub></span> = 111 mM), which was out of the range (0-7 mM) of the biosensor (position 1). The bioreactor was inoculated with an overnight culture of Saccharomyces cerevisiae and the feedback regulation was switched on (position 2). After 11.5 h of fermentation, <span class="html-italic">c<sub>GL</sub></span> dropped below 7 mM (position 3).</p> "> Figure 6
<p>Detailed time record of feedback regulation of glucose concentration during stationary phase of cultivation of <span class="html-italic">Saccharomyces cerevisiae</span>.</p> "> Figure 7
<p>Sensitivity of the optical sensitive layer in 42 repeated measurements during two months.</p> "> Figure 8
<p>Maxima of linear dynamic range of the optical sensitive layer in 42 repeated measurements during two months.</p> "> Figure 9
<p>Response time of the optical sensitive layer in 42 repeated measurements during two months.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Media and Gasses
2.3. Microorganisms
2.4. Preparation of Optical Sensitive Layers
2.5. Feedback Regulation System
2.6. Reproducibility of Biosensor Response in Repetitive Measurements during 2 Months
2.7. Sterilization
2.8. Off-Line Measurement of Glucose Concentration
2.9. Control of Glucose Concentration with Feedback Regulation System
2.9.1. Feedback Regulation of Glucose Concentration to Lower Level (Dilution Mode).
2.9.2. Feedback Regulation of Glucose Concentration of Fed Batch Cultivation of Saccharomyces cerevisiae in Stationary Phase (Cultivation Mode)
3. Results and Discussion
3.1. Feedback Regulation of Glucose Concentration to Lower Level (Dilution Mode)
3.2. Feedback Regulation of Concentration of Glucose of Fed Batch Cultivation of Saccharomyces Cerevisiae in Stationary Phase (Cultivation Mode)
3.3. Reproducibility of the Biosensor Response during 2 Month.
3.4. Wider Applicability of the Biosensor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
cycle ↓↑ | Cycle adding glucose to reach cGLDES followed by consumption with yeast culture to cGLMIN |
τMAX | Fluorescence lifetime corresponded with maximum allowed glucose concentration |
τMIN | Fluorescence lifetime corresponded with minimum allowed glucose concentration |
τDES | Fluorescence lifetime corresponded with desired glucose concentration |
τ0 | Fluorescence lifetime corresponded with zero glucose concentration |
cGL | Actual glucose concentration |
cGLMAX | Maximum allowed glucose concentration |
cGLMIN | Minimum allowed glucose concentration |
cGLDES | Desired glucose concentration |
cGLREG | Glucose concentration after the regulation |
cGL0 | Zero glucose concentration |
dO2 | Concentration of dissolved oxygen |
GOXX-S | Glucose oxidase type X-S from Aspergillus niger with specific activity 228.4 kU g−1 |
GOXII-S | Glucose oxidase type II-S from Aspergillus niger with specific activity 37.7 kU g−1 |
LOD | Limit of detection |
LDR | Linear dynamic range |
LDRMAX | Maximum of linear dynamic range |
OD | Optical density |
ORM-RC | Mixture prepared by mixing Ormocer® with Ru complex and Irgacure 500 |
RuC Tris | (4,7-difenyl-1,10-fenantrolin) ruthenium(II) dichloride |
RT | Response time of the biosensor during testing of reproducibility of biosensor response |
RT90 | Response time of biosensor during diluting of solution |
RT90* | Response time of biosensor during cultivation |
s | Deviation from desired glucose concentration after regulation during diluting of solution |
s* | Deviation from desired glucose concentration after regulation during cultivation |
SEPA | Sepabeads® EC-HA 403 |
SEPA-GOX | Sepabeads® with immobilized glucose oxidase |
SN | Sensitivity |
tCHEC | Checking time |
References
- World Health Organization Global Report on Diabetes. Available online: https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf (accessed on 6 January 2021).
- Clarke, S.F.; Foster, J.R. A History of Blood Glucose Meters and Their Role in Self-Monitoring of Diabetes Mellitus. Br. J. Biomed. Sci. 2012, 69, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and Analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, P.; Chatterjee, B.; Sen, S. EM-Wave Biosensors: A Review of RF, Microwave, Mm-Wave and Optical Sensing. Sensors 2019, 19, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, T.; Foster, R.; Hao, Y. Radio-Frequency and Microwave Techniques for Non-Invasive Measurement of Blood Glucose Levels. Diagnostics 2019, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S.; Kokabi, H.; Alquié, G.; Deshours, F.; Shubair, R.M. Low-Cost Portable Microwave Sensor for Non-Invasive Monitoring of Blood Glucose Level: Novel Design Utilizing a Four-Cell CSRR Hexagonal Configuration. Sci. Rep. 2020, 10, 15200. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.G.; Bronchalo, E.; Potelon, B.; Quendo, C.; Avila-Navarro, E.; Sabater-Navarro, J.M. Concentration Measurement of Microliter-Volume Water–Glucose Solutions Using $Q$ Factor of Microwave Sensors. IEEE Trans. Instrum. Meas. 2019, 68, 2621–2634. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Sabu, C.; Henna, T.K.; Raphey, V.R.; Nivitha, K.P.; Pramod, K. Advanced Biosensors for Glucose and Insulin. Biosens. Bioelectron. 2019, 141, 111201. [Google Scholar] [CrossRef]
- Gutiérrez-Capitán, M.; Baldi, A.; Fernández-Sánchez, C. Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers. Sensors 2020, 20, 967. [Google Scholar] [CrossRef] [Green Version]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Ayenimo, J.G.; Adeloju, S.B. Amperometric Detection of Glucose in Fruit Juices with Polypyrrole-Based Biosensor with an Integrated Permselective Layer for Exclusion of Interferences. Food Chem. 2017, 229, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, M.; Lepore, M. Determination of Different Saccharides Concentration by Means of a Multienzymes Amperometric Biosensor. J. Sens. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Panjan, P.; Virtanen, V.; Sesay, A.M. Towards Microbioprocess Control: An Inexpensive 3D Printed Microbioreactor with Integrated Online Real-Time Glucose Monitoring. Analyst 2018, 143, 3926–3933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otten, J. A FRET-Based Biosensor for the Quantification of Glucose in Culture Supernatants of ML Scale Microbial Cultivations. Microb. Cell Factories 2019, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2000, 72, 81–90. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2002, 74, 2663–2678. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2004, 76, 3269–3284. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2006, 78, 3859–3874. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2008, 80, 4269–4283. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2008−2012). Anal. Chem. 2013, 85, 487–508. [Google Scholar] [CrossRef]
- Wang, X.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2013–2015). Anal. Chem. 2016, 88, 203–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2015–2019). Anal. Chem. 2020, 92, 397–430. [Google Scholar] [CrossRef] [PubMed]
- Lladó Maldonado, S.; Panjan, P.; Sun, S.; Rasch, D.; Sesay, A.M.; Mayr, T.; Krull, R. A Fully Online Sensor-Equipped, Disposable Multiphase Microbioreactor as a Screening Platform for Biotechnological Applications. Biotechnol. Bioeng. 2019, 116, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Blankenstein, G.; Spohn, U.; Preuschoff, F.; Thommes, J.; MR, K. Multichannel Flow-Injection-Analysis Biosensor System for on-Line Monitoring of Glucose, Lactate, Glutamine, Glutamate and Ammonia in Animal Cell Culture. Biotechnol. Appl. Biochem. 1994, 20, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sun, J.; Mathew, G.; Jeevarajan, A.S.; Anderson, M.M. Continuous Glucose Monitoring and Control in a Rotating Wall Perfused Bioreactor. Biotechnol. Bioeng. 2004, 87, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.; Dzyadevych, S.; Fernández-Lafuente, R.; Jaffrezic, N.; Kuncová, G.; Matějec, V.; Scully, P. Hybrid Coatings as Transducers in Optical Biosensors. J. Coat. Technol. Res. 2008, 5, 491–496. [Google Scholar] [CrossRef]
- Scully, P.J.; Betancor, L.; Bolyo, J.; Dzyadevych, S.; Guisan, J.M.; Fernandez-Lafuente, R.; Jaffrezic-Renault, N.; Kuncova, G.; Matějec, V.; O’Kennedy, B.; et al. Optical Fibre Biosensors Using Enzymatic Transducers to Monitor Glucose. Meas. Sci. Technol. 2007, 18, 3177. [Google Scholar] [CrossRef]
- Koštejnová, L.; Přibyl, M.; Koštejn, M.; Kuncová, G. Analytical Characteristics of a Glucose Sensor with an Optical Oxygen Transducer for the Monitoring of Biotechnological Processes. Meas. Sci. Technol. 2019, 30, 015103. [Google Scholar] [CrossRef]
- Tric, M.; Lederle, M.; Neuner, L.; Dolgowjasow, I.; Wiedemann, P.; Wölfl, S.; Werner, T. Optical Biosensor Optimized for Continuous In-Line Glucose Monitoring in Animal Cell Culture. Anal. Bioanal. Chem. 2017, 409, 5711–5721. [Google Scholar] [CrossRef]
Test | Velocity of Stirring in Activation of Sepabeads®(rpm) | Enzyme (mgenzyme/gSEPA) | Thickness * (nm) | SN (μs L mmol−1) | LDR (mM) | RT (min) | |
---|---|---|---|---|---|---|---|
GOXX-S | GOXII-S | ||||||
Dilution | 20 | 125 | ----- | 280 | 0.452 | 0–1.5 | 3 |
Cultivation | 20 | ----- | 12.5 | 225 | 0.091 | 0–7 | 5 |
Response reproducibility ** | 800 | 125 | ----- | 300 | 0.306 | 0–1.6 | 9 |
Experiment | cGLDES (mM) | cGLREG (mM) | RT90 (min) | s (%) |
---|---|---|---|---|
I. | 0.4 | 0.388 | 3 | 3 |
0.380 | 4 | 5 | ||
0.411 | 4 | 3 | ||
II. | 0.4 | 0.404 | 2 | 1 |
0.400 | 4 | 0 | ||
0.393 | 4 | 2 | ||
III. | 0.4 | 0.396 | 3 | 1 |
0.398 | 5 | 1 | ||
0.400 | 5 | 0 | ||
IV. | 0.1 | 0.097 | 5 | 3 |
0.093 | 5 | 7 | ||
0.101 | 2 | 1 |
Number of of cycle ↓↑ | cGLDES (mM) | cGLREG (mM) | RT90 (min) | s* (%) |
---|---|---|---|---|
1 | 3.5 | 3.7 | 6 | 6 |
2 | 3.5 | 3.6 | 3 | 3 |
3 | 3.5 | 3.6 | 3 | 3 |
4 | 3.5 | 3.2 | 6 | 9 |
5 | 3.5 | 3.5 | 4 | 0 |
6 | 3.5 | 3.4 | 2 | 3 |
7 | 3.5 | 3.4 | 4 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koštejnová, L.; Ondráček, J.; Majerová, P.; Koštejn, M.; Kuncová, G.; Trögl, J. Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor. Sensors 2021, 21, 565. https://doi.org/10.3390/s21020565
Koštejnová L, Ondráček J, Majerová P, Koštejn M, Kuncová G, Trögl J. Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor. Sensors. 2021; 21(2):565. https://doi.org/10.3390/s21020565
Chicago/Turabian StyleKoštejnová, Lucie, Jakub Ondráček, Petra Majerová, Martin Koštejn, Gabriela Kuncová, and Josef Trögl. 2021. "Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor" Sensors 21, no. 2: 565. https://doi.org/10.3390/s21020565
APA StyleKoštejnová, L., Ondráček, J., Majerová, P., Koštejn, M., Kuncová, G., & Trögl, J. (2021). Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor. Sensors, 21(2), 565. https://doi.org/10.3390/s21020565