Car Seats with Capacitive ECG Electrodes Can Detect Cardiac Pacemaker Spikes
<p>Positions of the capacitive electrocardiogram (ECG) electrodes on the car seat. In the sitting place, the sewn conductive textile was used as a driven ground plane feeding the common-mode signal back to the subject’s body.</p> "> Figure 2
<p>The transfer function of the instrumentation with a gain of 49 dB. The cutoff frequencies were approximately at <math display="inline"><semantics> <mrow> <mn>0.13</mn> </mrow> </semantics></math> and 102 <math display="inline"><semantics> <mi>Hz</mi> </semantics></math> for 2nd order high-pass and 6th order low-pass Butterworth filters analog domain, respectively.</p> "> Figure 3
<p>The effect of the analog filters on the spikes of a cardiac pacemaker. The shape of the ideal spike (<b>a</b>) is widened with an attenuated amplitude in (<b>b</b>), which can be attributed to the low-pass filter in the analog measurement channel. The spectrograms in (<b>c</b>,<b>d</b>) from the short-time Fourier transform (with Hann window of 64 <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">s</mi> </semantics></math>) of the spikes illustrate the impulse-like characteristics of the ideal pacemaker spike and the dampened one of the measurement simulation, respectively. Both spectrograms have the same frequency and color scales but have different time scales to demonstrate the widening better.</p> "> Figure 4
<p>The pacemaker spike detection algorithm proposed by Herleikson [<a href="#B31-sensors-20-06288" class="html-bibr">31</a>]. After a differentiator, the algorithm searches for consecutive extrema points with opposite polarities occurring within 3 <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">s</mi> </semantics></math>. If the magnitudes of both extrema (marked with red circles) are higher than the adaptive threshold, the instance is classified as a pacemaker spike. The adaptive threshold is calculated as the threshold factor <span class="html-italic">k</span> times the highest absolute value in the last 64<math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math><math display="inline"><semantics> <mi mathvariant="normal">s</mi> </semantics></math> window.</p> "> Figure 5
<p>Illustration of the overall fusion algorithm for the detection of the cardiac pacemaker spikes. The resulting spikes (red dots) with an signal quality index (SQI) higher than 0.2 from the channels available (CH2 and CH3) are combined with OR logic and depicted with red diamonds.</p> "> Figure 6
<p>Overview of the workflow generating the results.</p> "> Figure 7
<p>A short section of reference ECG (rECG) and cECG signals serving as an example. When spikes are detected in the rECG by the internal algorithm of the patient monitor, they are irreversibly replaced by an ideal impulse. Undetected spikes (marked with black dots) are present in the beat numbers 2, 3, 4, 5 and 7, which preserved their original shape and amplitude.</p> "> Figure 8
<p>A short section of multichannel cECG measurement during DDD stimulation with three cECG channels. The red circles indicate the results of the spike detection algorithm for each channel, whereas red diamonds are the annotated spikes from the reference system.</p> "> Figure 9
<p>True positive rate (TPR), positive predictive value (PPV) and <math display="inline"><semantics> <msub> <mi>F</mi> <mi>β</mi> </msub> </semantics></math> scores of the pacemaker spike detection algorithm [<a href="#B31-sensors-20-06288" class="html-bibr">31</a>] on cECG measurements. TPR (<b>a</b>) and PPV (<b>b</b>) are plotted for both Alg<sub>DBW</sub> (blue) and Alg<sub>cECG</sub> (orange). Alg<sub>DBW</sub> (<b>c</b>) and Alg<sub>cECG</sub> (<b>d</b>) are evaluated with <math display="inline"><semantics> <msub> <mi>F</mi> <mi>β</mi> </msub> </semantics></math> scores for three different <math display="inline"><semantics> <mi>β</mi> </semantics></math> values of 0.5, 1 and 2 (blue, orange and gold, respectively). TPR of Alg<sub>cECG</sub> for different stimulation types (UA, UV, BA and BV) are plotted in (<b>e</b>).</p> "> Figure 10
<p>TPR, PPV and <math display="inline"><semantics> <msub> <mi>F</mi> <mi>β</mi> </msub> </semantics></math> scores of Alg<sub>DBW</sub> on cECG measurements. TPR (<b>a</b>) and PPV (<b>b</b>) are plotted for each channel and their fusion separately. <math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mn>0.5</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>F</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>F</mi> <mn>2</mn> </msub> </semantics></math> are plotted in (<b>c</b>,<b>d</b>,<b>e</b>) respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. ECG Recording
2.2. Measurement Protocol
- UV: Unipolar ventricular stimulation,
- BV: Bipolar ventricular stimulation,
- UA: Unipolar atrial stimulation, or
- BA: Bipolar atrial stimulation.
2.3. Detection Algorithm
2.4. Metrics
2.5. Fusion of the Channels
3. Results
3.1. Comparison of rECG with cECG
3.2. Comparison of Signal Quality in cECG Channels
3.3. Multichannel Measurement of Cardiac Pacemaker Spikes
3.4. Detection Efficiency
3.5. Effect of SQI and Fusion on Detection
4. Discussion
5. Conclusions
6. Ethics Statement
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mendis, S.; Puska, P.; Norrving, B.; World Health Organization. Global Atlas on Cardiovascular Disease Prevention and Control; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Raatikainen, M.P.; Arnar, D.O.; Zeppenfeld, K.; Merino, J.L.; Levya, F.; Hindriks, G.; Kuck, K.H. Statistics on the use of cardiac electronic devices and electrophysiological procedures in the European Society of Cardiology countries: 2014 report from the European Heart Rhythm Association. EP Eur. 2015, 17, i1–i75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, P.J.; Stobie, P.; Knuiman, M.W.; Briffa, T.G.; Hobbs, M.S. Trends in the incidence and prevalence of cardiac pacemaker insertions in an ageing population. Open Heart 2014, 1, e000177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.G.; Kim, K.K.; Park, K.S. ECG recording on a bed during sleep without direct skin-contact. IEEE Trans. Biomed. Eng. 2007, 54, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Leicht, L.; Skobel, E.; Knackstedt, C.; Mathissen, M.; Sitter, A.; Wartzek, T.; Möhler, W.; Reith, S.; Leonhardt, S.; Teichmann, D. Capacitive ECG Monitoring in Cardiac Patients during Simulated Driving. IEEE Trans. Biomed. Eng. 2018, 66, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, E.; Haberman, M. Insulating electrodes: A review on biopotential front ends for dielectric skin–electrode interfaces. Physiol. Meas. 2010, 31, S183. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.M.; Jung, T.P.; Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wartzek, T.; Lammersen, T.; Eilebrecht, B.; Walter, M.; Leonhardt, S. Triboelectricity in capacitive biopotential measurements. IEEE Trans. Biomed. Eng. 2011, 58, 1268–1277. [Google Scholar] [CrossRef]
- Serteyn, A.; Vullings, R.; Meftah, M.; Bergmans, J.W. Motion artifacts in capacitive ECG measurements: Reducing the combined effect of DC voltages and capacitance changes using an injection signal. IEEE Trans. Biomed. Eng. 2014, 62, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uguz, D.U.; Tufan, T.B.; Uzun, A.; Leonhardt, S.; Antink, C.H. Physiological Motion Artifacts in Capacitive ECG: Ballistocardiographic Impedance Distortions. IEEE Trans. Instrum. Meas. 2020, 69, 3297–3307. [Google Scholar] [CrossRef]
- Lampert, R.; Joska, T.; Burg, M.M.; Batsford, W.P.; McPherson, C.A.; Jain, D. Emotional and physical precipitants of ventricular arrhythmia. Circulation 2002, 106, 1800–1805. [Google Scholar] [CrossRef] [Green Version]
- Antoun, M.; Edwards, K.M.; Sweeting, J.; Ding, D. The acute physiological stress response to driving: A systematic review. PLoS ONE 2017, 12, e0185517. [Google Scholar] [CrossRef]
- van Wyk, F.; Khojandi, A.; Masoud, N. Optimal switching policy between driving entities in semi-autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2020, 114, 517–531. [Google Scholar] [CrossRef]
- Glikson, M.; Trusty, J.M.; Grice, S.K.; Hayes, D.L.; Hammill, S.C.; Stanton, M.S. A stepwise testing protocol for modern implantable cardioverter-defibrillator systems to prevent pacemaker-implantable cardioverter-defibrillator interactions. Am. J. Cardiol. 1999, 83, 360–366. [Google Scholar] [CrossRef]
- Winter, B.B.; Webster, J.G. Driven-right-leg circuit design. IEEE Trans. Biomed. Eng. 1983, 62–66. [Google Scholar] [CrossRef]
- Petrutiu, S.; Sahakian, A.V.; Ricke, A.; Young, B.; Swiryn, S. High resolution electrocardiography optimised for recording pulses from electronic pacemakers: Evaluation of a new pacemaker sensing system. In Proceedings of the 2007 Computers in Cardiology, Durham, NC, USA, 30 September–3 October 2007; pp. 197–200. [Google Scholar]
- Baker-Jarvis, J.; Janezic, M.D.; DeGroot, D.C. High-frequency dielectric measurements. IEEE Instrum. Meas. Mag. 2010, 13, 24–31. [Google Scholar] [CrossRef]
- Ouyang, Y.; Chappell, W.J. High frequency properties of electro-textiles for wearable antenna applications. IEEE Trans. Antennas Propag. 2008, 56, 381–389. [Google Scholar] [CrossRef]
- Lesnikowski, J. Dielectric permittivity measurement methods of textile substrate of textile transmission lines. Prz. Elektrotechniczny 2012, 3, 148–151. [Google Scholar]
- Jonassen, N. Human body capacitance: Static or dynamic concept? [ESD]. In Proceedings of the Electrical Overstress/Electrostatic Discharge Symposium Proceedings 1998 (Cat. No. 98TH8347), Reno, NV, USA, 6–8 October 1998; pp. 111–117. [Google Scholar]
- Parente, F.R.; Santonico, M.; Zompanti, A.; Benassai, M.; Ferri, G.; D’Amico, A.; Pennazza, G. An electronic system for the contactless reading of ECG signals. Sensors 2017, 17, 2474. [Google Scholar] [CrossRef] [Green Version]
- Ueno, A.; Akabane, Y.; Kato, T.; Hoshino, H.; Kataoka, S.; Ishiyama, Y. Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: A preliminary study. IEEE Trans. Biomed. Eng. 2007, 54, 759–766. [Google Scholar] [CrossRef]
- Carvalho, N.B.; Georgiadis, A. Wireless Power Transmission for Sustainable Electronics: COST WiPE-IC1301; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile materials for the design of wearable antennas: A survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef]
- Wartzek, T.; Eilebrecht, B.; Lem, J.; Lindner, H.J.; Leonhardt, S.; Walter, M. ECG on the road: Robust and unobtrusive estimation of heart rate. IEEE Trans. Biomed. Eng. 2011, 58, 3112–3120. [Google Scholar] [CrossRef] [PubMed]
- Plesinger, F.; Jurco, J.; Halamek, J.; Jurak, P. SignalPlant: An open signal processing software platform. Physiol. Meas. 2016, 37, N38. [Google Scholar] [CrossRef]
- Luo, S.; Johnston, P.; Hong, W. Performance Study of Digital Pacer Spike Detection as Sampling Rate Changes. In Proceedings of the 2008 Computers in Cardiology, Bologna, Italy, 14–17 September 2008; pp. 349–352. [Google Scholar]
- Jekova, I.; Tsibulko, V.; Iliev, I. ECG database applicable for development and testing of pace detection algorithms. Int. J. Bioautom. 2014, 18, 377–388. [Google Scholar]
- Polpetta, A.; Banelli, P. Fully Digital Pacemaker Detection in ECG Signals Using a Non-Linear Filtering Approach. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–24 August 2008; pp. 5406–5410. [Google Scholar]
- Helfenbein, E.D.; Lindauer, J.M.; Zhou, S.H.; Gregg, R.E.; Herleikson, E.C. A software-based pacemaker pulse detection and paced rhythm classification algorithm. J. Electrocardiol. 2002, 35, 95. [Google Scholar] [CrossRef]
- Herleikson, E.C. ECG Pace Pulse Detection and Processing. U.S. Patent 5,682,902, 4 November 1997. [Google Scholar]
- Clifford, G.; Behar, J.; Li, Q.; Rezek, I. Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol. Meas. 2012, 33, 1419. [Google Scholar] [CrossRef] [Green Version]
- Saadi, H.; Attari, M. Electrode-Gel-Skin Interface Characterization and Modeling for Surface Biopotential Recording: Impedance Measurements and Noise. In Proceedings of the 2nd International Conference on Advances in Biomedical Engineering (ICABME 2013), Tripoli, Lebanon, 10–14 September 2013; pp. 49–52. [Google Scholar]
- Eilebrecht, B.; Willkomm, J.; Pohl, A.; Wartzek, T.; Leonhardt, S. Impedance measurement system for determination of capacitive electrode coupling. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 682–689. [Google Scholar] [CrossRef]
- Atallah, L.; Serteyn, A.; Meftah, M.; Schellekens, M.; Vullings, R.; Bergmans, J.; Osagiator, A.; Oetomo, S.B. Unobtrusive ECG monitoring in the NICU using a capacitive sensing array. Physiol. Meas. 2014, 35, 895. [Google Scholar] [CrossRef] [Green Version]
- Antink, C.H.; Breuer, E.; Uguz, D.U.; Leonhardt, S. Signal-Level Fusion with Convolutional Neural Networks for Capacitively Coupled ECG in the Car. In Proceedings of the Computing in Cardiology Conference 2018, Maastricht, The Netherlands, 23–26 September 2018; Volume 45, pp. 1–4. [Google Scholar]
- Wedekind, D.; Kleyko, D.; Osipov, E.; Malberg, H.; Zaunseder, S.; Wiklund, U. Robust methods for automated selection of cardiac signals after blind source separation. IEEE Trans. Biomed. Eng. 2018, 65, 2248–2258. [Google Scholar] [CrossRef]
- Serteyn, A.; Lin, X.; Amft, O. Reducing Motion Artifacts for Robust QRS Detection in Capacitive Sensor Arrays. In Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, Barcelona, Spain, 26–29 October 2011; pp. 1–5. [Google Scholar]
Patient | Age | Sex | Height (cm) | Weight (kg) | Pacemaker | Clothing |
---|---|---|---|---|---|---|
P1 | 85 | M | 176 | 75 | DDD | Cotton undershirt |
P2 | 82 | M | 182 | 92 | DDD | Cotton undershirt and cotton shirt |
P3 | 84 | F | 163 | 85 | DDD | Thin blouse of a cotton-polyester mixture |
P4 | 63 | F | 180 | 89 | DDD | Cotton undershirt and cotton t-shirt |
P5 | 78 | M | 174 | 82 | DDD | Two layers of cotton undershirt |
P6 | 82 | F | 158 | 86 | DDD | T-shirt of a cotton-polyester-elastane mixture |
P7 | 80 | M | 188 | 95 | DDD | Cotton undershirt and cotton t-shirt |
P8 | 73 | F | 156 | 55 | Bi-vent | Thin blouse of a polyester-cotton mixture |
P9 | 86 | F | 168 | 75 | DDD | Thin cotton pullover |
P10 | 84 | M | 171 | 75 | DDD | Cotton undershirt |
P11 | 88 | F | 177 | 75 | Bi-vent | Cotton undershirt and thin pullover |
of a cotton-polyester mixture | ||||||
P12 | 62 | F | 161 | 68 | DDD | Thick cotton pullover and two layers of |
cotton undershirt | ||||||
P13 | 83 | M | 182 | 85 | DDD | Hospital gown and bathrobe |
P14 | 86 | F | 154 | 95 | DDD | Pullover of a cotton-polyester mixture |
P15 | 73 | M | 190 | 103 | DDD | Cotton undershirt |
P16 | 83 | F | 168 | 68 | DDD | Cotton undershirt and cotton t-shirt |
P17 | 72 | F | 162 | 80 | DDD | Cotton undershirt and pullover of |
a cotton-polyester mixture | ||||||
P18 | 80 | M | 171 | 63 | DDD | Cotton undershirt and cotton shirt |
P19 | 75 | F | 164 | 69 | Bi-vent | Cotton undershirt |
P20 | 85 | M | 158 | 53 | DDD | Cotton undershirt and cotton shirt |
basSQI | qrsSQI | pliSQI | SQI | |
---|---|---|---|---|
CH1 | 0.25 ± 0.22 | 0.87 ± 0.11 | 0.67 ± 0.23 | 0.60 ± 0.11 |
CH2 | 0.36 ± 0.23 | 0.81 ± 0.17 | 0.62 ± 0.24 | 0.60 ± 0.12 |
CH3 | 0.52 ± 0.29 | 0.78 ± 0.17 | 0.82 ± 0.18 | 0.71 ± 0.12 |
# of Spikes | ||||||||
---|---|---|---|---|---|---|---|---|
UA | UV | BA | BV | Total | ||||
CH1 | 398 | 691 | 219 | 464 | 1772 (48.5%) | |||
CH2 | 427 | 766 | 260 | 529 | 1982 (54.3%) | |||
CH3 | 799 | 1308 | 426 | 807 | 3340 (91.5%) | |||
SNR (dB) | Ap-p ( ) | |||||||
UA | UV | BA | BV | UA | UV | BA | BV | |
CH1 | 5.7 | 4.5 | −1.8 | −2.3 | 100 | 90 | 29 | 25 |
CH2 | 4.6 | 6.7 | −1.6 | −1.6 | 155 | 149 | 42 | 43 |
CH3 | 13.5 | 12.0 | −1.5 | 0.6 | 140 | 123 | 11 | 15 |
Optimized for | Optimized for | Optimized for | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k | TPR | PPV | k | TPR | PPV | k | TPR | PPV | |||||
AlgDBW | BA | 1.4 | 0.23 | 0.41 | 0.35 | 1.3 | 0.31 | 0.34 | 0.32 | 1 | 0.56 | 0.18 | 0.40 |
BV | 1.7 | 0.24 | 0.61 | 0.47 | 1.4 | 0.41 | 0.41 | 0.41 | 1.1 | 0.68 | 0.23 | 0.49 | |
UA | 3 | 0.66 | 0.96 | 0.88 | 2.5 | 0.71 | 0.91 | 0.80 | 1.9 | 0.80 | 0.72 | 0.78 | |
UV | 3 | 0.67 | 0.96 | 0.88 | 2.45 | 0.72 | 0.91 | 0.80 | 2 | 0.78 | 0.77 | 0.78 | |
Total | 2.7 | 0.47 | 0.93 | 0.78 | 2.15 | 0.54 | 0.83 | 0.65 | 1.6 | 0.64 | 0.55 | 0.62 | |
AlgcECG | BA | 1.7 | 0.17 | 0.47 | 0.35 | 1.4 | 0.34 | 0.30 | 0.32 | 1.15 | 0.56 | 0.19 | 0.40 |
BV | 1.85 | 0.29 | 0.56 | 0.47 | 1.6 | 0.39 | 0.41 | 0.40 | 1.25 | 0.67 | 0.23 | 0.48 | |
UA | 3.45 | 0.65 | 0.95 | 0.87 | 2.9 | 0.70 | 0.91 | 0.79 | 2 | 0.82 | 0.65 | 0.78 | |
UV | 3.35 | 0.65 | 0.95 | 0.87 | 2.75 | 0.71 | 0.89 | 0.80 | 2.1 | 0.79 | 0.69 | 0.78 | |
Total | 3.1 | 0.47 | 0.93 | 0.78 | 2.35 | 0.54 | 0.78 | 0.64 | 1.85 | 0.64 | 0.56 | 0.62 |
basSQI | qrsSQI | pliSQI | SQI | ||
---|---|---|---|---|---|
BA | CH1 | −0.07 * | −0.01 | 0.05 | −0.01 |
CH2 | 0.04 | 0.00 | 0.00 | 0.01 | |
CH3 | 0.17 * | 0.02 | 0.04 | 0.08 * | |
BV | CH1 | −0.04 | 0.01 | 0.06 * | 0.01 |
CH2 | −0.03 | 0.03 * | 0.06 * | 0.02 | |
CH3 | 0.03 | 0.05 * | 0.02 | 0.04 * | |
UA | CH1 | −0.07 * | −0.03 * | 0.09 * | 0.00 |
CH2 | 0.07 * | −0.22 * | 0.18 * | 0.01 | |
CH3 | 0.17 * | −0.10 * | 0.13 * | 0.07 * | |
UV | CH1 | −0.05 * | −0.03 * | 0.06 * | −0.01 |
CH2 | 0.03 | −0.10 * | 0.10 * | 0.01 | |
CH3 | 0.05 * | −0.07 * | 0.14 * | 0.04 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uguz, D.U.; Dettori, R.; Napp, A.; Walter, M.; Marx, N.; Leonhardt, S.; Hoog Antink, C. Car Seats with Capacitive ECG Electrodes Can Detect Cardiac Pacemaker Spikes. Sensors 2020, 20, 6288. https://doi.org/10.3390/s20216288
Uguz DU, Dettori R, Napp A, Walter M, Marx N, Leonhardt S, Hoog Antink C. Car Seats with Capacitive ECG Electrodes Can Detect Cardiac Pacemaker Spikes. Sensors. 2020; 20(21):6288. https://doi.org/10.3390/s20216288
Chicago/Turabian StyleUguz, Durmus Umutcan, Rosalia Dettori, Andreas Napp, Marian Walter, Nikolaus Marx, Steffen Leonhardt, and Christoph Hoog Antink. 2020. "Car Seats with Capacitive ECG Electrodes Can Detect Cardiac Pacemaker Spikes" Sensors 20, no. 21: 6288. https://doi.org/10.3390/s20216288
APA StyleUguz, D. U., Dettori, R., Napp, A., Walter, M., Marx, N., Leonhardt, S., & Hoog Antink, C. (2020). Car Seats with Capacitive ECG Electrodes Can Detect Cardiac Pacemaker Spikes. Sensors, 20(21), 6288. https://doi.org/10.3390/s20216288