Robotic Localization Based on Planar Cable Robot and Hall Sensor Array Applied to Magnetic Capsule Endoscope
<p>Schematic of the proposed position tracking system capable of sensing volume extension by using CDPR and HES, and its application to CE localization.</p> "> Figure 2
<p>Schematic of HES array and PM; HES array is configured to detect a PM in 3D space.</p> "> Figure 3
<p>Kinematic diagram of the CDPR.</p> "> Figure 4
<p>Block diagram for the proposed PM position tracking system.</p> "> Figure 5
<p>PM position estimation system for HES performance validation experiment.</p> "> Figure 6
<p>Measured magnetic field of PM using HES with respect to PM’s different positions; (<b>a</b>) PM stayed in HES center Point. (<b>b</b>) PM stayed in HES +X direction. (<b>c</b>) PM stayed in HES -X direction. (<b>d</b>) PM stayed in HES +Y direction.</p> "> Figure 7
<p>Measured rotation angle of PM using HES with respect to PM’s different rotation; (<b>a</b>) PM rotated in <math display="inline"><semantics> <mi>θ</mi> </semantics></math> direction, (<b>b</b>) PM rotated in <math display="inline"><semantics> <mi>φ</mi> </semantics></math> direction.</p> "> Figure 8
<p>CDPR EE moves to Helical trajectory in the X-Y-Z direction and using NDI Spectra & HES measure CDPR EE’s and PM’s X, Y Z Position (<b>Left</b>). NDI Spectra & HES validation in time domain position and error value in each direction (<b>Right</b>).</p> "> Figure 9
<p>CDPR EE moves to rotation trajectory in the <math display="inline"><semantics> <mi>θ</mi> </semantics></math>-<math display="inline"><semantics> <mi>φ</mi> </semantics></math> direction and using NDI Spectra & HES measure CDPR EE’s and PM’s <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, <math display="inline"><semantics> <mi>φ</mi> </semantics></math> degree (<b>Left</b>). NDI Spectra & HES validation in time domain rotation and error value in each direction (<b>Right</b>).</p> "> Figure 10
<p>The prototyped system with CDPR EE equipping HES which can track the position of the PM.</p> "> Figure 11
<p>Stereoscopic objects of CDPR tracking system experiment (<b>Left</b>) and snapshot of the CDPR tracking system in stereoscopic object jig (<b>Right</b>).</p> "> Figure 12
<p>The result of CDPR EE tracking the 3D-object position of PM; (<b>a</b>) Tracking and localization performance in 3D space and (<b>b</b>) Tracking and localization performance in time domain.</p> "> Figure 13
<p>Snapshot of the CDPR tracking system in virtual human small and large intestines.</p> "> Figure 14
<p>The result of CDPR EE tracking localization performance in 2D space; (<b>a</b>) Tracking and localization performance in 3D space and (<b>b</b>) Tracking and localization performance in time domain.</p> ">
Abstract
:1. Introduction
2. PM Position Recognition Method
2.1. PM Sensing by Using the HES Array
2.2. PM Tracking by the CDPR
2.3. PM Position Estimation
3. Experimental Results
3.1. Experimental Setup
3.2. HES Performance Validation
3.3. Position Estimation by CDPR Tracking Control
3.3.1. Tracking Validated for Static Position in Z-axis
3.3.2. Tracking Performance Validation
3.3.3. Experimental Result
4. Discussions and Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Position of the Hall effect sensors | |
Position of the permanent magnet | |
Rotational angles of the permanent magnet | |
Magnetic field intensity | |
Constant coefficient | |
Air magnetic permeability | |
Relative permeability of the medium | |
Magnetization | |
Distance from the vector of permanent magnet to the Hall effect sensors | |
Jacobian matrix | |
Parameter increment | |
Estimated position and rotational value of the permanent magnet | |
Proximal attachment point to the winch | |
Distal attachment point of the end effector | |
Rotation vector | |
Pose of the end effector |
References
- Iddan, G.; Meron, G.; Glukhovsky, A.; Swain, P. Wireless Capsule Endoscopy. Nature 2000, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Moglia, A.; Menciassi, A.; Dario, P.; Cuschieri, A. Capsule endoscopy: Progress update and challenges ahead. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Valdastri, P.; Simi, M.; Webster, R.J. Advanced Technologies for Gastrointestinal Endoscopy. Annu. Rev. Biomed. Eng. 2012, 14, 397–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, M.; Hu, C.; Chen, Z.; Zhang, H.; Liu, S. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope. IEEE Trans. Biomed. Eng. 2010, 57, 2891–2902. [Google Scholar] [CrossRef]
- Nam, S.J.; Lee, H.S.; Lim, Y.J. Evaluation of gastric disease with capsule endoscopy. Clin. Endosc. 2018, 51, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Joe, S.; Lee, D.; Kang, B.; Park, J.O.; Kim, B. Design and testing of a compact tattooing mechanism for capsule endoscope. J. Korean Soc. Precis. Eng. 2019, 36, 449–454. [Google Scholar] [CrossRef]
- Hoang, M.C.; Le, V.H.; Kim, J.; Choi, E.; Kang, B.; Park, J.O.; Kim, C.S. A wireless tattooing capsule endoscope using external electromagnetic actuation and chemical reaction pressure. PLoS ONE 2019, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yim, S.; Gultepe, E.; Gracias, D.H.; Sitti, M. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans. Biomed. Eng. 2014, 61, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.T.; Hoang, M.C.; Choi, E.; Kang, B.; Park, J.O.; Kim, C.S. Medical Microrobot—A Drug Delivery Capsule Endoscope with Active Locomotion and Drug Release Mechanism: Proof of Concept. Int. J. Control. Autom. Syst. 2020, 18, 65–75. [Google Scholar] [CrossRef]
- Gröning, R.; Bensmann, H.; Müller, R.S. Control of drug release from capsules using high frequency energy transmission systems. Int. J. Pharm. 2008, 364, 9–13. [Google Scholar] [CrossRef]
- Aiello, G.; De Momi, E.; Völgyesi, P.; Lédeczi, Á.; Valdastri, P. Component based design of a drug delivery capsule robot. Sens. Actuators A Phys. 2016, 245, 180–188. [Google Scholar] [CrossRef] [Green Version]
- McCoy, E.J.; Baker, R.D. Intestinal slow waves: Decrease in propagation velocity along upper small intestine. Am. J. Dig. Dis. 1969, 14, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Yang, S.; Kim, J.; Park, S.; Cho, J.H.; Park, J.Y.; Bang, S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointest. Endosc. 2010, 72, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Gang, T.; Hu, M.; Bai, X.; Rong, Q. Sensitivity-improved ultrasonic sensor for 3D imaging of seismic physical model using a compact microcavity. Sensors 2018, 18, 2315. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Orense, R.P. Development of a magnetic tracking system for monitoring ground movements during geohazards: Some preliminary results. E3S Web Conf. 2019, 92, 1–8. [Google Scholar] [CrossRef]
- Bulat, J.; Duda, K.; Duplaga, M.; Fraczek, R.; Skalski, A.; Socha, M.; Turcza, P.; Zielinski, T.P. Data processing tasks in wireless GI endoscopy: Image-based capsule localization & navigation and video compression. Annu. Int. Conf. IEEE Eng. Med. Biol. Proc. 2007, 061105, 2815–2818. [Google Scholar] [CrossRef]
- Carpi, F.; Pappone, C. Stereotaxis Niobe® magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Rev. Med. Devices 2009, 6, 487–498. [Google Scholar] [CrossRef]
- Ciuti, G.; Valdastri, P.; Menciassi, A.; Dario, P. Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 2010, 28, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Popek, K.M.; Schmid, T.; Abbott, J.J. Six-Degree-of-Freedom Localization of an Untethered Magnetic Capsule Using a Single Rotating Magnetic Dipole. IEEE Robot. Autom. Lett. 2017, 2, 305–312. [Google Scholar] [CrossRef]
- Taddese, A.Z.; Slawinski, P.R.; Pirotta, M.; De Momi, E.; Obstein, K.L.; Valdastri, P. Enhanced real-time pose estimation for closed-loop robotic manipulation of magnetically actuated capsule endoscopes. Int. J. Rob. Res. 2018, 37, 890–911. [Google Scholar] [CrossRef]
- Plotkin, A.; Paperno, E. 3-D Magnetic Tracking of a Single Subminiature Coil with a Large 2-D Array of Uniaxial Transmitters. IEEE Trans. Magn. 2003, 39, 3295–3297. [Google Scholar] [CrossRef]
- Yang, W.; Hu, C.; Li, M.; Meng, M.Q.H.; Song, S. A new tracking system for three magnetic objectives. IEEE Trans. Magn. 2010, 46, 4023–4029. [Google Scholar] [CrossRef]
- WANG, X.; MENG, M.Q.-H. Study of a Position and Orientation Tracking Method for Wireless Capsule Endoscope. Int. J. Inf. Acquis. 2005, 2, 113–121. [Google Scholar] [CrossRef]
- Plotkin, A.; Kucher, V.; Horen, Y.; Paperno, E. A new calibration procedure for magnetic tracking systems. IEEE Trans. Magn. 2008, 44, 4525–4528. [Google Scholar] [CrossRef]
- Su, S.; Yang, W.; Dai, H.; Xia, X.; Lin, M.; Sun, B.; Hu, C. Investigation of the Relationship between Tracking Accuracy and Tracking Distance of a Novel Magnetic Tracking System. IEEE Sens. J. 2017, 17, 4928–4937. [Google Scholar] [CrossRef]
- Son, D.; Yim, S.; Sitti, M. A 5-D Localization Method for a Magnetically Manipulated Untethered Robot Using a 2-D Array of Hall-Effect Sensors. IEEE/ASME Trans. Mechatron. 2016, 21, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Qiu, X.; Wang, J.; Meng, M.Q.H. Design and Optimization Strategy of Sensor Array Layout for Magnetic Localization System. IEEE Sens. J. 2017, 17, 1849–1857. [Google Scholar] [CrossRef]
- Schlageter, V.; Besse, P.A.; Popovic, R.S.; Kucera, P. Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnet. Sens. Actuators A Phys. 2001, 92, 37–42. [Google Scholar] [CrossRef]
- Schlageter, V.; Drljaca, P.; Popovic, R.S.; Kučera, P. A magnetic tracking system based on highly sensitive integrated hall sensors. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2002, 45, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Li, B.; Qiao, W.; Hu, C.; Ren, H.; Yu, H.; Zhang, Q.; Meng, M.Q.H.; Xu, G. 6-D magnetic localization and orientation method for an annular magnet based on a closed-form analytical model. IEEE Trans. Magn. 2014, 50. [Google Scholar] [CrossRef]
- Than, T.D.; Alici, G.; Zhou, H.; Li, W. A review of localization systems for robotic endoscopic capsules. IEEE Trans. Biomed. Eng. 2012, 59, 2387–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Zheng, Z.; Hu, C. Magnetic localization and orientation of the capsule endoscope based on a random complex algorithm. Med. Devices Evid. Res. 2015, 8, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.G.; Hong, Y.S.; Lim, E.J. Position and orientation detection of capsule endoscopes in spiral motion. Int. J. Precis. Eng. Manuf. 2010, 11, 31–37. [Google Scholar] [CrossRef]
- Di Natali, C.; Beccani, M.; Simaan, N.; Valdastri, P. Jacobian-Based Iterative Method for Magnetic Localization in Robotic Capsule Endoscopy. IEEE Trans. Robot. 2016, 32, 327–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Kim, J.; Choi, H.; Choi, J.; Jeong, S.; Cha, K.; Park, J.O.; Park, S. Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot. Sens. Actuators A Phys. 2010, 161, 297–304. [Google Scholar] [CrossRef]
- Hoang, M.C.; Nguyen, K.T.; Le, V.H.; Kim, J.; Choi, E.; Park, J.; Kim, C. Independent Electromagnetic Field Control for Practical Approach to Actively Locomotive Wireless Capsule Endoscope. IEEE Trans. Syst. Man Cybern. Syst. 2019, 1–13. [Google Scholar] [CrossRef]
- Kim, J.; Nguyen, P.B.; Kang, B.; Choi, E.; Park, J.O.; Kim, C.S. A Novel Tip-positioning Control of a Magnetically Steerable Guidewire in Sharply Curved Blood Vessel for Percutaneous Coronary Intervention. Int. J. Control. Autom. Syst. 2019, 17, 2069–2082. [Google Scholar] [CrossRef]
- Go, G.; Nguyen, V.D.; Jin, Z.; Park, J.O.; Park, S. A Thermo-electromagnetically Actuated Microrobot for the Targeted Transport of Therapeutic Agents. Int. J. Control. Autom. Syst. 2018, 16, 1341–1354. [Google Scholar] [CrossRef]
- Hu, C.; Meng, M.Q.; Mandal, M. Efficient magnetic localization and orientation technique for capsule endoscopy. 2005 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS 2005, 2, 3365–3370. [Google Scholar] [CrossRef]
- Taylor, C.R.; Abramson, H.G.; Herr, H.M. Low-Latency Tracking of Multiple Permanent Magnets. IEEE Sens. J. 2019, 19, 11458–11468. [Google Scholar] [CrossRef]
- Miermeister, P.; Lächele, M.; Boss, R.; Masone, C.; Schenk, C.; Tesch, J.; Kerger, M.; Teufel, H.; Pott, A.; Bülthoff, H.H. The CableRobot simulator large scale motion platform based on Cable Robot technology. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3024–3029. [Google Scholar] [CrossRef]
- Bruckmann, T.; Pott, A. Integration of a parallel cable-driven robot on an exisiting building facade. Cable-Driven Parallel Robot. 2013, 12, 119–134. [Google Scholar] [CrossRef]
- Pott, A. Cable-Driven Parallel Robots: Theory and Application; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 120, ISBN 9783319761374. [Google Scholar]
- Li, J.; Nie, Z.; Liu, Y.; Wang, L.; Hao, Y. Characterization of In-Body Radio Channels for Wireless Implants. IEEE Sens. J. 2017, 17, 1528–1537. [Google Scholar] [CrossRef]
- Pott, A.; Bruckmann, T.; Mikelsons, L. Closed-form Force Distribution for Parallel Wire Robots. In Computational Kinematics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 25–34. [Google Scholar] [CrossRef]
- Piao, J.; Kim, E.S.; Choi, H.; Moon, C.B.; Choi, E.; Park, J.O.; Kim, C.S. Indirect force control of a cable-driven parallel robot: Tension estimation using artificial neural network trained by force sensor measurements. Sensors 2019, 19, 2520. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.J.; Jung, J.; Ko, S.Y.; Choi, E.; Park, J.O.; Kim, C.S. Geometric parameter calibration for a cable-driven parallel robot based on a single one-dimensional laser distance sensor measurement and experimental modeling. Sensors 2018, 18, 2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, C.W.; Lee, D.; Rew, K.H.; Kim, K.S. An Impulse-time Perturbation Approach for a Symmetric Extra-insensitive Input Shaper. Int. J. Control. Autom. Syst. 2018, 16, 1239–1246. [Google Scholar] [CrossRef]
RMSE | NDI | Hall Effect Sensor | ||||||
---|---|---|---|---|---|---|---|---|
Helical Trajectory | X (mm) | Y (mm) | Z (mm) | X (mm) | Y (mm) | Z (mm) | ||
0.1796 | 0.1739 | 0.0441 | 0.9531 | 0.8495 | 1.1382 | |||
Rotation Trajectory | θ (°) | φ (°) | θ (°) | φ (°) | ||||
0.1232 | 0.4875 | 1.1449 | 1.0408 |
Condition | Signal to Noise Ratio by Vertical Distance (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | |
Static (dB) | 53.77 | 39.47 | 35.36 | 29.18 | 27.95 | 18.19 | 18.05 | 16.34 | 4.55 |
Moving (dB) | 53.77 | 48.22 | 41.78 | 39.07 | 35.76 | 35.71 | 32.76 | 31.78 | 29.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-C.; Kim, E.-S.; Park, J.-O.; Choi, E.; Kim, C.-S. Robotic Localization Based on Planar Cable Robot and Hall Sensor Array Applied to Magnetic Capsule Endoscope. Sensors 2020, 20, 5728. https://doi.org/10.3390/s20205728
Kim M-C, Kim E-S, Park J-O, Choi E, Kim C-S. Robotic Localization Based on Planar Cable Robot and Hall Sensor Array Applied to Magnetic Capsule Endoscope. Sensors. 2020; 20(20):5728. https://doi.org/10.3390/s20205728
Chicago/Turabian StyleKim, Min-Cheol, Eui-Sun Kim, Jong-Oh Park, Eunpyo Choi, and Chang-Sei Kim. 2020. "Robotic Localization Based on Planar Cable Robot and Hall Sensor Array Applied to Magnetic Capsule Endoscope" Sensors 20, no. 20: 5728. https://doi.org/10.3390/s20205728
APA StyleKim, M.-C., Kim, E.-S., Park, J.-O., Choi, E., & Kim, C.-S. (2020). Robotic Localization Based on Planar Cable Robot and Hall Sensor Array Applied to Magnetic Capsule Endoscope. Sensors, 20(20), 5728. https://doi.org/10.3390/s20205728