Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements
<p>Scatter plot of uncorrelated (<b>a</b>) and correlated (<b>b</b>) geometry-free <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo> </mo> </mrow> </semantics></math> ambiguities.</p> "> Figure 2
<p>Behavior of a full period of the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> system, in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>〈</mo> <mrow> <mn>0</mn> <mo>;</mo> <mn>77</mn> </mrow> <mo>〉</mo> </mrow> </mrow> </semantics></math> interval, for GPS observations of L1 and L2 frequencies.</p> "> Figure 3
<p>Behavior of a full period of the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> system, in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>〈</mo> <mrow> <mn>0</mn> <mo>;</mo> <mn>60</mn> </mrow> <mo>〉</mo> </mrow> </mrow> </semantics></math> interval, for GPS observations L1 and L2 frequencies.</p> "> Figure 4
<p>Behavior of a full period of the <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> function in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> system, in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>〈</mo> <mrow> <mn>0</mn> <mo>;</mo> <mn>77</mn> </mrow> <mo>〉</mo> </mrow> </mrow> </semantics></math> interval, for GPS observations of L1 and L2 frequencies.</p> "> Figure 5
<p>Behavior of a full period of the <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> function in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> system, in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>〈</mo> <mrow> <mn>0</mn> <mo>;</mo> <mn>60</mn> </mrow> <mo>〉</mo> </mrow> </mrow> </semantics></math> interval, for GPS observations of L1 and L2 frequencies.</p> "> Figure 6
<p>The area for seeking <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> ambiguities in phase measurements for the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function and the <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mi>L</mi> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>(</mo> <mrow> <mo> </mo> <mo>−</mo> <mn>14.3</mn> <mo> </mo> <mi>mm</mi> <mo>;</mo> <mo>+</mo> <mn>14.3</mn> <mo> </mo> <mi>mm</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> value.</p> "> Figure 7
<p>The area for seeking <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> ambiguities in phase measurements for the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function and the <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mi>L</mi> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>(</mo> <mrow> <mo> </mo> <mo>−</mo> <mn>14.3</mn> <mo> </mo> <mi>mm</mi> <mo>;</mo> <mo>+</mo> <mn>14.3</mn> <mo> </mo> <mi>mm</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> value.</p> "> Figure 8
<p>The area for seeking <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> ambiguities in phase measurements for the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function and the <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mi>L</mi> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>(</mo> <mrow> <mo> </mo> <mo>−</mo> <mn>27</mn> <mo> </mo> <mi>mm</mi> <mo>;</mo> <mo> </mo> <mo>+</mo> <mn>27</mn> <mo> </mo> <mi>mm</mi> </mrow> <mo>)</mo> </mrow> <mo> </mo> </mrow> </semantics></math> value.</p> "> Figure 9
<p>The area for seeking <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> ambiguities in phase measurements for the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function and the <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mi>L</mi> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>(</mo> <mrow> <mo> </mo> <mo>−</mo> <mn>27</mn> <mo> </mo> <mi>mm</mi> <mo>;</mo> <mo> </mo> <mo>+</mo> <mn>27</mn> <mo> </mo> <mi>mm</mi> </mrow> <mo>)</mo> </mrow> <mo> </mo> </mrow> </semantics></math> value.</p> "> Figure 10
<p>The area for seeking <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> ambiguities in phase measurements for the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function and the <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">L</mi> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">L</mi> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>52</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> <mo>;</mo> <mo> </mo> <mo>+</mo> <mn>52</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 11
<p>The area for seeking <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> ambiguities in phase measurements for the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function and the <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">L</mi> <mn>2</mn> <mo>,</mo> <mi mathvariant="normal">L</mi> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>52</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> <mo>;</mo> <mo> </mo> <mo>+</mo> <mn>52</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 12
<p>The searched sets of ambiguities in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> system for <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo><</mo> <mn>3.5</mn> <mo> </mo> <mi>cm</mi> </mrow> </semantics></math> and for <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>P</mi> </msub> <mo>=</mo> <mn>1.4</mn> <mrow> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 13
<p>The searched sets of ambiguities in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> system for <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo><</mo> <mn>6</mn> <mo> </mo> <mi>cm</mi> </mrow> </semantics></math> and for <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>P</mi> </msub> <mo>=</mo> <mn>1.4</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>.</p> "> Figure 14
<p>Behavior of the full period of the <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn>2</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> function, for <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>N</mi> <mo>˜</mo> </mover> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>05</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>N</mi> <mo>˜</mo> </mover> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>1.30</mn> </mrow> </semantics></math>, and for <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo><</mo> <mn>0.5</mn> <msub> <mi mathvariant="sans-serif">λ</mi> <mrow> <mi mathvariant="normal">L</mi> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 15
<p>The searched sets of ambiguities in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> system for <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>(</mo> <mrow> <mo> </mo> <mn>0</mn> <mo> </mo> <mo>;</mo> <mn>6</mn> <mrow> <mo> </mo> <mi>cm</mi> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> and for <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>P</mi> </msub> <mo>=</mo> <mn>1.4</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>.</p> "> Figure 16
<p>The search area of ambiguities in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> system for <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo><</mo> <mn>6</mn> <mo> </mo> <mi>cm</mi> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi mathvariant="normal">L</mi> <mn>1</mn> </mrow> </msub> <mo>⊂</mo> <mrow> <mo>〈</mo> <mrow> <mo>−</mo> <mn>5</mn> <mo>;</mo> <mo>+</mo> <mn>5</mn> </mrow> <mo>〉</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 17
<p>The search area of ambiguities in the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> system for: <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo><</mo> <mn>14.3</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo><</mo> <mn>27</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo><</mo> <mn>52</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>; and for <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>P</mi> </msub> <mo><</mo> <mn>0.86</mn> <mrow> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 18
<p>Values of the function <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in real L1-L2 measurements for fixed ambiguities, for the 3.6 km baseline.</p> "> Figure 19
<p>Values of the function <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">Ψ</mi> </mstyle> <msub> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">1</mn> </mrow> </msub> <msub> <mi mathvariant="bold-italic">N</mi> <mrow> <mi mathvariant="bold-italic">L</mi> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>−</mo> <mi>η</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> in the reinitialization approach for L1-L2 measurements based on the PREFMAR, for <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> secund.</p> ">
Abstract
:1. Introduction
2. Double-Differenced GPS Data Equations and the Correlation of Geometry-Free Ambiguities
3. Ambiguity Regression Line Equations for L1-L2 Measurements
4. Ambiguity Functions for L1-L2 GPS Measurements
5. Ambiguity Search Space in the PREFMAR Method
6. Numerical Example Using the PREFMAR Method and a Float Solution
7. Discussion of the PREFMAR’s Efficiency in Terms of Initialization and Reinitialization Based on Real Positioning Data Using L1-L2 GPS Measurements.
8. Summary and Conclusions
- GPS float solution;
- Global code GPS/GNSS solution XYZ (differential or relative) and single-epoch double-differenced L1-L2 GPS measurements;
- A single-epoch of double-differenced L1-L2 GPS measurements.
Funding
Conflicts of Interest
References
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. GNSS—Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More; Springer: Vienna, Austria, 2008. [Google Scholar]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Counselman, C.C.; Gourevitch, S.A. Miniature interferometer terminals for earth surveying: ambiguity and multipath with the global positioning system. IEEE Trans. Geosci. Remote Sens. 1981, 19, 244–252. [Google Scholar] [CrossRef]
- Counselman, C.C.; Abbot, R.I.; Gourevitch, S.A.; King, R.W.; Paradis, A.R. Centimeter-level relative positioning with GPS. J. Surv. Eng. 1983, 109, 81–89. [Google Scholar] [CrossRef]
- Kim, D.; Langley, R.B. GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues. In Proceedings of the 7th GNSS Workshop International Symposium on GPS/GNSS, Seoul, Korea, 30 November–2 December 2000; pp. 213–221. [Google Scholar]
- Melbourne, W.G. The Case for Ranging in GPS Based Geodetic Systems. In Proceedings of the 1st International Symposium on Precise Positioning with the GPS; Goad, C., Ed.; US Department of Commerce: Rockville, MD, USA, 1985; pp. 373–386. [Google Scholar]
- Wubbena, G. Software Developments for Geodetic Positioning with GPS Using TI4100 Code and Carrier Measurements. In Proceedings of the 1st International Symposium on Precise Positioning with the GPS, Rockville, MD, USA, 15–19 April 1985; pp. 403–412. [Google Scholar]
- Hatch, R.R. The Synergism of GPS Code and Carrier Measurements. In Proceedings of the 3rd International Symposium on Satellite Doppler Positioning, New Mexico State University, Las Cruces, NM, USA, 8–12 February 1982; Volume 2, pp. 1213–1231. [Google Scholar]
- Mervart, L.; Beutler, G.; Rothacher, M.; Wild, U. Ambiguity resolution strategies using the results of the International GPS Geodynamics Service (IGS). J. Geod. 1994, 68, 29–38. [Google Scholar] [CrossRef]
- Remondi, B.W. Pseudo-kinematic GPS Results Using the Ambiguity Function Method. Navigation 1991, 38, 17–36. [Google Scholar] [CrossRef]
- Han, S.; Rizos, C. Improving the computational efficiency of the ambiguity function algorithm. J. Geod. 1996, 70, 330–341. [Google Scholar] [CrossRef]
- Cellmer, S.; Nowel, K.; Kwasniak, D. The new search method in precise GNSS positioning. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 404–415. [Google Scholar] [CrossRef]
- Hatch, R. Instantaneous ambiguity resolution. In Proceedings of the KIS’90, Banff, AB, Canada, 10–13 September 1990; pp. 299–308. [Google Scholar]
- Frei, E.; Beutler, G. Rapid static positioning based on the fast ambiguity resolution approach “FARA”: Theory and first results. Manus Geod. 1990, 15, 325–356. [Google Scholar]
- Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J. Geod. 1995, 70, 65–82. [Google Scholar] [CrossRef]
- Feng, Y.; Li, B. Three Carier Ambiguity Resolutions: Generalised Problems, Models and Solutions. J. Glob. Position. Syst. 2009, 8, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Li, B. Review of triple-frequency GNSS: Ambiguity resolution, benefits and challenges. J. Glob. Position. Syst. 2018, 16, 1. [Google Scholar] [CrossRef]
- O’Keefe, K.; Petovello, M.; Cao, W.; Lachapelle, G.; Guyader, E. Comparing Multicarrier Ambiguity Resolution Methods for Geometry-Based GPS and Galileo Relative Positioning and Their Application to Low Earth Orbiting Satellite Attitude Determination. Int. J. Navig. Obs. 2009. [Google Scholar] [CrossRef] [Green Version]
- Bakuła, M. Precise Method of Ambiguity Initialization for Short Baselines with L1–L5 or E5–E5a GPS/GALILEO data. Sensors 2020, 20, 4318. [Google Scholar] [CrossRef] [PubMed]
- Misra, P.; Enge, P. Global Positioning System. Signals, Measurements, and Performance; Ganga-Jamuna Press: Lincoln, MA, USA, 2006. [Google Scholar]
- Teunissen, P.J.G. An analytical study of ambiguity decorrelation using dual frequency code and carrier phase. J. Geod. 1996, 70, 515–528. [Google Scholar] [CrossRef]
- Ciećko, A.; Bakuła, M.; Grunwald, G.; Ćwiklak, J. Examination of Multi-Receiver GPS/EGNOS Positioning with Kalman Filtering and Validation Based on CORS Stations. Sensors 2020, 20, 2732. [Google Scholar] [CrossRef] [PubMed]
- Bakuła, M.; Uradziński, M.; Krasuski, K. Network Code DGNSS Positioning for Faster L1–L5 GPS Ambiguity Initialization. Sensors 2020, 20, 5671. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, P.J.G.; Kleusberg, A. GPS for Geodesy; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
No. Sol. | ||||
---|---|---|---|---|
−6 | −4.193 | −0.047 | −4 | |
−5 | −3.414 | −0.101 | −3 | |
−4 | −2.635 | 0.089 | −3 | |
−3 | −1.855 | 0.035 | −2 | |
−2 | −1.076 | −0.019 | III | −1 |
−1 | −0.297 | −0.073 | 0 | |
0 | 0.482 | 0.118 | 0 | |
1 | 1.261 | 0.064 | 1 | |
2 | 2.041 | 0.010 | I | 2 |
3 | 2.820 | −0.044 | 3 | |
4 | 3.599 | −0.098 | 4 | |
5 | 4.378 | 0.092 | 4 | |
6 | 5.158 | 0.038 | 5 | |
7 | 5.937 | −0.015 | II | 6 |
8 | 6.716 | −0.069 | 7 |
No. Sol. | ||||
---|---|---|---|---|
−4 | −5.752 | 0.047 | −6 | |
−3 | −4.469 | −0.089 | −4 | |
−2 | −3.186 | −0.035 | −3 | |
−1 | −1.902 | 0.019 | III | −2 |
0 | −0.619 | 0.073 | −1 | |
1 | 0.665 | −0.064 | 1 | |
2 | 1.948 | −0.010 | I | 2 |
3 | 3.231 | 0.044 | 3 | |
4 | 4.515 | −0.092 | 5 | |
5 | 5.798 | −0.038 | 6 | |
6 | 7.081 | 0.015 | II | 7 |
7 | 8.365 | 0.069 | 8 |
G27-G09 | 600 | 0 | 0 |
G27-G12 | 103 | 465 | 32 |
G27-G15 | 401 | 199 | 0 |
G27-G17 | 213 | 375 | 12 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakuła, M. Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements. Sensors 2020, 20, 5730. https://doi.org/10.3390/s20205730
Bakuła M. Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements. Sensors. 2020; 20(20):5730. https://doi.org/10.3390/s20205730
Chicago/Turabian StyleBakuła, Mieczysław. 2020. "Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements" Sensors 20, no. 20: 5730. https://doi.org/10.3390/s20205730
APA StyleBakuła, M. (2020). Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements. Sensors, 20(20), 5730. https://doi.org/10.3390/s20205730