Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye
<p>Scheme of AHCS as a quantitative immunoassay. (<b>A</b>) The principle of alkaline phosphatase (ALP)-triggered sol-gel transition of Cu<sup>2+</sup> cross-linked-alginate hydrogel. (<b>B</b>) Principle of AHCS-based immunoassay using ALP-labeled antibody.</p> "> Figure 2
<p>Distance of the flow in AHCS responding to different concentration of Cu.</p> "> Figure 3
<p>Alginate hydrogel-embedded capillary sensor (AHCS) for the detection of ALP. (<b>a</b>) Time-distance dependent to different concentration of ALP measured with AHCS. (<b>b</b>) Photos of AHCS responding to different concentration of ALP. The white color in the capillary is gel and gray color in the capillary is air. (<b>c</b>) Distance of the flow in AHCS responding to different concentration of ALP. (<b>d</b>) The relationship of distance to different concentrations of ALP. Mean ± SD, n = 3.</p> "> Figure 4
<p>Comparable result was obtained with AHCS and ELISA for immunoassay. (<b>a</b>) The relationship of the distance measured with ELISA or distance measured with AHCS to different concentrations of HBsAg using AHCS with ALP-labeled goat-anti-human antibody as the detection Antibody. (<b>b</b>) The relationship of the absorbance measured with ELISA to distance measured with AHCS. Mean ± SD, n = 3.</p> "> Figure 5
<p>Flow distance measured with AHCS in the presence of different interference, The ALP concentration is 100 mU/mL. The concentrations of other interferences are 1 mM. Mean ± SD, n = 3.</p> "> Figure 6
<p>Quantitative detection of hepatitis B surface antigen (HBsAg) in serum samples. (<b>a</b>) AHCS and its comparison with traditional ELISA (<b>b</b>). Mean ± SD, n = 3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Cu-Cross-Linked Hydrogel
2.3. Fabrication of AHCS for Visual Immunoassay
2.4. Sensing of ALP with AHCS
2.5. Selectivity of AHCS
2.6. AHCS for Immune Sensing of Hepatitis B Virus Surface Antigen (HBsAg)
2.7. Traditional ELISA for Immune Sensing of HBsAg
3. Results
3.1. Principle of ALP-Modulated Gel-Sol Transformation
3.2. Optimization of Cu2+ in AHCS for ALP Detection
3.3. Sensitivity of AHCS for ALP Detection
3.4. Sensitivity of AHCS for Immunoassay
3.5. The Selectivity of AHCS for Immunoassay
3.6. AHCS for Immunoassay in Human Serum Samples
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huang, R.; Zhang, K.; Zhu, G.; Sun, Z.; He, S.; Chen, W. Blocking-Free ELISA using a gold nanoparticle layer coated commercial microwell plate. Sensors 2018, 18, 3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Li, H.; Chen, W.; Ji, J.; Jiang, X. Recyclable Colorimetric Detection of Trivalent Cations in Aqueous Media Using Zwitterionic Gold Nanoparticles. Anal. Chem. 2016, 88, 4140–4146. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, R.; Cuartero, M.; Crespo, G.A. Modern creatinine (Bio) sensing: Challenges of point-of-care platforms. Biosens. Bioelectron. 2019, 130, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gan, S.D.; Patel, K.R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Investig. Dermatol. 2013, 133, e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Zeng, L.; Chen, Y. Bioorthogonal Reactions Amplify Magnetic Nanoparticles Binding and Assembly for Ultrasensitive Magnetic Resonance Sensing. Anal. Chem. 2020, 92, 2787–2793. [Google Scholar] [CrossRef] [PubMed]
- De La Rica, R.; Stevens, M.M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotech. 2012, 7, 821–824. [Google Scholar] [CrossRef]
- Sajid, M.; Kawde, A.-N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19, 689–705. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.H.; Lee, S.K.; Oh, Y.K.; Bae, B.W.; Lee, S.D.; Kim, S.; Shin, Y.-B.; Kim, M.-G. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens. Bioelectron. 2010, 25, 1999–2002. [Google Scholar] [CrossRef]
- Taton, K.; Johnson, D.; Guire, P.; Lange, E.; Tondra, M. Lateral flow immunoassay using magnetoresistive sensors. J. Magn. Magn. Mater. 2009, 321, 1679–1682. [Google Scholar] [CrossRef]
- Dutta, S. Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review. TrAC Trends Anal. Chem. 2019, 110, 393–400. [Google Scholar] [CrossRef]
- Chen, W.; Li, Q.; Zheng, W.; Hu, F.; Zhang, G.; Wang, Z.; Zhang, D.; Jiang, X. Identification of bacteria in water by a fluorescent array. Angew. Chem. Int. Ed. 2014, 126, 13954–13959. [Google Scholar] [CrossRef]
- Xu, L.; Lu, Z.; Cao, L.; Pang, H.; Zhang, Q.; Fu, Y.; Xiong, Y.; Li, Y.; Wang, X.; Wang, J. In-field detection of multiple pathogenic bacteria in food products using a portable fluorescent biosensing system. Food Control. 2017, 75, 21–28. [Google Scholar] [CrossRef]
- Deng, Z.; Guo, Y.; Zhao, X.; Ma, P.X.; Guo, B. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 2018, 30, 1729–1742. [Google Scholar] [CrossRef]
- Kahn, J.S.; Hu, Y.; Willner, I. Stimuli-responsive DNA-based hydrogels: From basic principles to applications. Acc. Chem. Res. 2017, 50, 680–690. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321. [Google Scholar] [CrossRef]
- Tokarev, I.; Minko, S. Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv. Mater. 2010, 22, 3446–3462. [Google Scholar] [CrossRef]
- Wang, K.; Burban, J.; Cussler, E. Hydrogels as separation agents. In Responsive Gels: Volume Transitions II; Springer: Berlin/Heidelberg, Germany, 1993; pp. 67–79. [Google Scholar]
- Lee, A.L.; Voo, Z.X.; Chin, W.; Ono, R.J.; Yang, C.; Gao, S.; Hedrick, J.L.; Yang, Y.Y. Injectable coacervate hydrogel for delivery of anticancer drug-loaded nanoparticles in vivo. ACS Appl. Mater. Interfaces 2018, 10, 13274–13282. [Google Scholar] [CrossRef]
- Ozay, O.; Ekici, S.; Baran, Y.; Aktas, N.; Sahiner, N. Removal of toxic metal ions with magnetic hydrogels. Water Res. 2009, 43, 4403–4411. [Google Scholar] [CrossRef]
- Gogoi, N.; Barooah, M.; Majumdar, G.; Chowdhury, D. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl. Mater. Interfaces 2015, 7, 3058–3067. [Google Scholar] [CrossRef]
- Ye, B.-F.; Zhao, Y.-J.; Cheng, Y.; Li, T.-T.; Xie, Z.-Y.; Zhao, X.-W.; Gu, Z.-Z. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 2012, 4, 5998–6003. [Google Scholar] [CrossRef]
- Ma, Y.; Mao, Y.; An, Y.; Tian, T.; Zhang, H.; Yan, J.; Zhu, Z.; Yang, C.J. Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst 2018, 143, 1679–1684. [Google Scholar] [CrossRef]
- Liu, R.; Huang, Y.; Ma, Y.; Jia, S.; Gao, M.; Li, J.; Zhang, H.; Xu, D.; Wu, M.; Chen, Y. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Appl. Mater. Interfaces 2015, 7, 6982–6990. [Google Scholar] [CrossRef]
- Griffete, N.; Frederich, H.; Maître, A.; Ravaine, S.; Chehimi, M.M.; Mangeney, C. Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing. Langmuir 2012, 28, 1005–1012. [Google Scholar] [CrossRef]
- Peppas, N.A.; Van Blarcom, D.S. Hydrogel-based biosensors and sensing devices for drug delivery. J. Control. Release 2016, 240, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Mou, L.; Jiang, X. Hydrogels incorporating Au@ polydopamine nanoparticles: Robust performance for optical sensing. Anal. Chem. 2018, 90, 11423–11430. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Z.; Weng, Y.; Tan, H. Pyrophosphate ion-responsive alginate hydrogel as an effective fluorescent sensing platform for alkaline phosphatase detection. Chem. Commun. 2019, 55, 11450–11453. [Google Scholar] [CrossRef]
- Jiang, C.; Li, Y.; Wang, H.; Chen, D.; Wen, Y. A portable visual capillary sensor based on functional DNA crosslinked hydrogel for point-of-care detection of lead ion. Sens. Actuators B Chem. 2020, 307, 127625. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Jiao, X.; Li, T.; Lv, Z.; Yang, C.J.; Zhang, X.; Wen, Y. Control of capillary behavior through target-responsive hydrogel permeability alteration for sensitive visual quantitative detection. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhao, D.; Sun, J.; Yang, X. Colorimetric logic gate for pyrophosphate and pyrophosphatase via regulating the catalytic capability of horseradish peroxidase. ACS Appl. Mater. Interfaces 2016, 8, 29529–29535. [Google Scholar] [CrossRef]
Sample No. | Added HBsAg (ng/mL) | AHCS (ng/mL) | ELISA (ng/mL) |
---|---|---|---|
S1 | 0.5 | 0.4621 | 0.4785 |
S2 | 1 | 1.0945 | 0.9212 |
S3 | 2 | 1.864 | 2.123 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Gao, C.; Shen, L.; Qu, C.; Zhang, X.; Yang, L.; Feng, Q.; Tang, R. Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye. Sensors 2020, 20, 4831. https://doi.org/10.3390/s20174831
Zheng W, Gao C, Shen L, Qu C, Zhang X, Yang L, Feng Q, Tang R. Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye. Sensors. 2020; 20(17):4831. https://doi.org/10.3390/s20174831
Chicago/Turabian StyleZheng, Wenshu, Cen Gao, Liheng Shen, Chang Qu, Xuan Zhang, Lu Yang, Qiang Feng, and Rongbing Tang. 2020. "Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye" Sensors 20, no. 17: 4831. https://doi.org/10.3390/s20174831
APA StyleZheng, W., Gao, C., Shen, L., Qu, C., Zhang, X., Yang, L., Feng, Q., & Tang, R. (2020). Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye. Sensors, 20(17), 4831. https://doi.org/10.3390/s20174831