Blocking-Free ELISA Using a Gold Nanoparticle Layer Coated Commercial Microwell Plate
<p>Characterization of gold nanoparticles (GNPs) and the GNP layer. Transmission electron microscope (TEM) image of 13 nm GNPs (<b>a</b>); TEM image of 37 nm GNPs (<b>b</b>); UV-Vis spectrum of GNPs (<b>c</b>); pictures with an optical density of 520 nm (OD<sub>520</sub>) of the gold content of microplates treated three different ways and untreated microplates (<b>d</b>).</p> "> Figure 2
<p>Results of the commercial ELISA. Pictures of the routine ELISA on the microplate without (<b>a</b>) and with (<b>b</b>) a 13 nm GNP layer. OD<sub>620</sub> vs. CEA concentration of the routine ELISA on the microplate without and with a GNP layer (<b>c</b>).</p> "> Figure 3
<p>The results of the blocking-free ELISA. Pictures of the blocking-free ELISA on the microplate without and with the GNP layer (<b>a</b>); OD<sub>620</sub> vs. CEA concentration of the blocking-free ELISA on the microplate without and with the GNP layer (<b>b</b>); OD<sub>620</sub> vs. CEA concentration of the routine and blocking-free ELISA on the microplate with the GNP layer (<b>c</b>); OD<sub>620</sub> vs. CEA concentration of the blocking-free ELISA on microplates with the GNP layer prepared freshly and stored at 37 °C over a period of five days (<b>d</b>).</p> "> Figure 4
<p>Results of blocking-free ELISA on different GNP layer coated microplates. Pictures of different GNP layers (<b>a</b>); pictures of blocking-free ELISA on three different GNP layers (<b>b</b>); OD<sub>620</sub> vs. CEA concentration on three different GNP layers (<b>c</b>).</p> "> Scheme 1
<p>Schematic diagram of a PEI-GNP coated microwell plate and its application in a blocking-free “sandwich” ELISA.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Synthesis and Characterization of Citrate-Coated GNPs
2.3. Formation of a Citrate-Coated Gold Nanoparticle Layer (GNPL) on PS Microplate Wells
2.4. ELISA Protocol on Untreated and GNPL Coated 96 Well Microplates
3. Results and Discussion
3.1. Characterization of GNPs with Different Sizes and the GNP Layer on the Microplates
3.2. Commercial ELISA on GNP Layer Coated Microplates
3.3. Blocking-Free ELISA on GNP Layer Coated Microplates
3.4. The Influence of Different GNP Layer Coated Microplates on Blocking-Free ELISA
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of interest
References
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef] [PubMed]
- Packard, R.R.S.; Libby, P. Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clin. Chem. 2008, 54, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.J.; Xiong, C.J.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.Y.; Blazey, T.M.; et al. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.M.; Martinez, A.W.; Gong, J.L.; Mace, C.R.; Phillips, S.T.; Carrilho, E.; Mirica, K.A.; Whitesides, G.M. Paper-Based ELISA. Angew. Chem. Int. Edit. 2010, 49, 4771–4774. [Google Scholar] [CrossRef] [PubMed]
- Ran, B.; Zheng, W.; Dong, M.; Xianyu, Y.; Chen, Y.; Wu, J.; Qian, Z.; Jiang, X. Peptide-Mediated Controllable Cross-Linking of Gold Nanoparticles for Immunoassays with Tunable Detection Range. Anal. Chem. 2018, 90, 8234–8240. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.S.; Tsaloglou, M.N.; Sisley, T.; Chrisfodouleas, D.; Chen, A.; Milette, J.; Whitesides, G.M. Sliding-strip microfluidic device enables ELISA on paper. Biosens. Bioelectron. 2018, 99, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Selman, L.; Henriksen, M.L.; Brandt, J.; Palarasah, Y.; Waters, A.; Beales, P.L.; Holmskov, U.; Jorgensen, T.J.D.; Nielsen, C.; Skjodt, K.; et al. An enzyme-linked immunosorbent assay (ELISA) for quantification of human collectin 11 (CL-11, CL-K1). J. Immunol. Methods 2012, 375, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Franek, M.; Rubio, D.; Diblikova, I.; Rubio, F. Analytical evaluation of a high-throughput enzyme-linked immunosorbent assay for acrylamide determination in fried foods. Talanta 2014, 123, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.D.; Cao, F.J.; He, S.L.; Xia, Y.; Liu, X.Y.; Jiang, W.X.; Yu, Y.Y.; Zhang, H.S.; Chen, W.W. FRET on lateral flow test strip to enhance sensitivity for detecting cancer biomarker. Talanta 2018, 176, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.Q.; Guan, Z.C.; Song, Y.L.; Song, E.; Lu, Z.F.; Liu, D.; An, Y.; Zhu, Z.; Zhou, L.J.; Yang, C.Y. Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein. Lab Chip 2018, 18, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.Y.; Watanabe, J.; Akashi, M. Polyelectrolyte multilayers-modified membrane filter for rapid immunoassay: Protein condensation by centrifugal permeation. Polym. J. 2011, 43, 35–40. [Google Scholar] [CrossRef]
- Qian, W.P.; Yao, D.F.; Yu, F.; Xu, B.; Zhou, R.; Bao, X.; Lu, Z.H. Immobilization of antibodies on ultraflat polystyrene surfaces. Clin. Chem. 2000, 46, 1456–1463. [Google Scholar] [PubMed]
- Gupta, S.; Huda, S.; Kilpatrick, P.K.; Velev, O.D. Characterization and optimization of gold nanoparticle-based silver-enhanced immunoassays. Anal. Chem. 2007, 79, 3810–3820. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Isaacs, S.N. Enzyme-Linked Immunosorbent Assay (ELISA) and Blocking with Bovine Serum Albumin (BSA)—Not all BSAs are alike. J. Immunol. Methods 2012, 384, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, M.V.; Huaning, Z.; Srinivasaraghavan, V.; Pruden, A.; Vikesland, P.; Agah, M. Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. Sens. Bio-Sens. Res. 2016, 8, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Guven, E.; Duus, K.; Lydolph, M.C.; Jorgensen, C.S.; Laursen, I.; Houen, G. Non-specific binding in solid phase immunoassays for autoantibodies correlates with inflammation markers. J. Immunol. Methods 2014, 403, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Gao, G.; Watanabe, J.; Liu, H.Y.; Shen, H.Y. Hydrophilic Polyelectrolyte Multilayers Improve the ELISA System: Antibody Enrichment and Blocking Free. Polymers 2017, 9, 13. [Google Scholar] [CrossRef]
- Hersey, J.S.; Meller, A.; Grinstaff, M.W. Functionalized Nanofiber Meshes Enhance Immunosorbent Assays. Anal. Chem. 2015, 87, 11863–11870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, Z.H.; Li, M.M.; Rong, P.F.; Wang, W.; Li, Y.J.; Liu, D.B. Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale 2016, 8, 17271–17277. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Xianyu, Y.L.; Dong, M.L.; Zhang, J.J.; Zheng, W.S.; Qian, Z.Y.; Jiang, X.Y. Cascade Reaction-Mediated Assembly of Magnetic/Silver Nanoparticles for Amplified Magnetic Biosensing. Anal. Chem. 2018, 90, 6906–6912. [Google Scholar] [CrossRef] [PubMed]
- Pertici, V.; Martrou, G.; Gigmes, D.; Trimaille, T. Synthetic Polymer-based Electrospun Fibers: Biofunctionalization Strategies and Recent Advances in Tissue Engineering, Drug Delivery and Diagnostics. Curr. Med. Chem. 2018, 25, 2385–2400. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wang, M.M.; Yuan, L.; Cheng, Z.P.; Wu, Z.Q.; Chen, H. Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst 2012, 137, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.L.; Shu, J.; Tang, D.P. Near-Infrared-to-Ultraviolet Light-Mediated Photoelectrochemical Aptasensing Platform for Cancer Biomarker Based on Core Shell NaYF4:Yb,Tm@TiO2 Upconversion Microrods. Anal. Chem. 2018, 90, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Minami, K.; Sakaue, H.; Shingubara, S.; Takahagi, T. Optical spectroscopic studies of the dispersibility of gold nanoparticle solutions. J. Appl. Phys. 2002, 92, 7486–7490. [Google Scholar] [CrossRef]
- Li, X.F.; Zhu, D.S.; Wang, X.J. Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J. Colloid Interface Sci. 2007, 310, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Baskar, L.K.V.; Srikanth, T.R.; Suba, S.; Mody, H.C.; Desai, P.K.; Kaliraj, P. Development and evaluation of a rapid flow-through immuno filtration test using recombinant filarial antigen for diagnosis of brugian and bancroftian filariasis. Microbiol. Immunol. 2004, 48, 519–525. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Zhang, K.; Zhu, G.; Sun, Z.; He, S.; Chen, W. Blocking-Free ELISA Using a Gold Nanoparticle Layer Coated Commercial Microwell Plate. Sensors 2018, 18, 3537. https://doi.org/10.3390/s18103537
Huang R, Zhang K, Zhu G, Sun Z, He S, Chen W. Blocking-Free ELISA Using a Gold Nanoparticle Layer Coated Commercial Microwell Plate. Sensors. 2018; 18(10):3537. https://doi.org/10.3390/s18103537
Chicago/Turabian StyleHuang, Ruijia, Ke Zhang, Guoshuai Zhu, Zhencheng Sun, Songliang He, and Wenwen Chen. 2018. "Blocking-Free ELISA Using a Gold Nanoparticle Layer Coated Commercial Microwell Plate" Sensors 18, no. 10: 3537. https://doi.org/10.3390/s18103537
APA StyleHuang, R., Zhang, K., Zhu, G., Sun, Z., He, S., & Chen, W. (2018). Blocking-Free ELISA Using a Gold Nanoparticle Layer Coated Commercial Microwell Plate. Sensors, 18(10), 3537. https://doi.org/10.3390/s18103537