A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring †
<p>Connection between the Bee board and the Queen board modules with the remote server.</p> "> Figure 2
<p>Schematic of electrical connections for the hive weight measurement system: the four load cells are connected in a Wheatstone bridge configuration, and the resulting signal is amplified before being acquired by the Raspberry Pi board.</p> "> Figure 3
<p>Implementation of the weight measurement system: (<b>a</b>) load cells installation, (<b>b</b>) aluminum covering frame, (<b>c</b>) weight measurement system installation under each hive within the bee colony, positioned in the University campus, and (<b>d</b>) weight measurements collected during 1 year.</p> "> Figure 4
<p>Flow charts of data acquisition routines, considering (<b>a</b>) weight acquisition code, (<b>b</b>) CO<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math> acquisition code, (<b>c</b>) temperature and humidity code, and (<b>d</b>) sound acquisition code.</p> "> Figure 5
<p>Schematic of electrical connections for the sound acquisition. The signal of ADMP401 microphone is acquired by means of Behringer UCA222 USB audio card which is connected to the Raspberry Pi board.</p> "> Figure 6
<p>Schematic of electrical connections for T6615 CO<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math> sensor and the DHT22 temperature/ humidity sensors. The carbon dioxide sensor is powered by an external power supply unit since it has a current consumption which is not manageable from the Raspberry Pi GPIO. The output of the CO<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math> sensor is an analog signal which is acquired by the ADS 1115 component.</p> "> Figure 7
<p>(<b>a</b>) Temperature and (<b>b</b>) relative humidity measurements during one year: in both cases, the first sensor is positioned on the inner lateral side of the hive (Lateral), the second sensor is positioned on the inner back side (Back), and the external sensor is positioned outside the hive (Ext).</p> "> Figure 8
<p>CO<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math> measurement during one year.</p> "> Figure 9
<p>First event: normal activity of the bee hives monitored through the analysis of (<b>a</b>) weight, (<b>b</b>) CO<sub>2</sub>, (<b>c</b>) temperature, and (<b>d</b>) relative humidity variations measured over 24 h on 1 February 2018. During the winter, there is a small activity of the hive confirmed by the measured data.</p> "> Figure 10
<p>First event: normal activity of the bee hives monitored through the analysis of (<b>a</b>) weight, (<b>b</b>) CO<sub>2</sub>, (<b>c</b>) temperature, and (<b>d</b>) relative humidity variations measured over 24 h on 1 June 2018. During the spring, there is a large activity in the central part of the day confirmed by the measured data.</p> "> Figure 11
<p>Second event: honey gathering derived from weight variations over one week: (<b>a</b>) spring season and (<b>b</b>) summer season.</p> "> Figure 12
<p>Third event: measurement during the swarming event in colony 1 during a day in April 2019 considering (<b>a</b>) weight variations and (<b>b</b>) related changes in recorded sound inside the colony.</p> "> Figure 13
<p>Third event: measurement during the swarming event in colony 2 during a day in June 2019 considering (<b>a</b>) weight variations and (<b>b</b>) related changes in recorded sound inside the colony.</p> ">
Abstract
:1. Introduction
2. State of the Art of Measurement Systems for Beehives
2.1. Weight Measurement
2.2. Sound Measurement
2.3. Humidity and Temperature Measurement
2.4. CO2 Measurement
3. Hardware and Software Implementation of the Multiparametric Measurement System
3.1. Weight Measurement Sub-System
3.2. Sound Measurement
3.3. Humidity and Temperature Measurement
- a measurement span from °C to °C, with an accuracy of ± °C and a resolution of °C for the temperature;
- a measurement span % RH with an accuracy of RH, and a resolution of RH, for the humidity.
3.4. CO2 Measurement
4. Experimental Results
- the normal activity of the beehives during a day;
- the honey gathering over one week comparing two seasons, i.e., spring and summer; and
- swarming event registered in two different hives.
5. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Faucon, J.; Mathieu, L.; Ribière, M.; Martel, A.; Drajnudel, P.; Zeggane, S.; Aurieres, C.; Aubert, M.F.A. Honey bee winter mortality in France in 1999 and 2000. Bee World 2002, 83, 14–23. [Google Scholar] [CrossRef]
- Oldroyd, B.P. What’s killing American honey bees? PLoS Biol. 2007, 5, e168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Zee, R.; Pisa, L.; Andonov, S.; Brodschneider, R.; Charriere, J.D.; Chlebo, R.; Coffey, M.F.; Crailsheim, K.; Dahle, B.; Gajda, A.; et al. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008/9 and 2009/10. J. Apic. Res. 2012, 51, 100–114. [Google Scholar] [CrossRef]
- Van Engelsdorp, D.; Hayes, J.J.; Underwood, R.; Pettis, J. A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 2010, 49, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Porrini, C.; Mutinelli, F.; Bortolotti, L.; Granato, A.; Laurenson, L.; Roberts, K.; Gallina, A.; Silvester, N.; Medrzycki, P.; Renzi, T.; et al. The status of honey bee health in Italy: Results from the nationwide bee monitoring network. PLoS ONE 2016, 11, e0155411. [Google Scholar] [CrossRef]
- Meikle, W.; Holst, N. Application of continuous monitoring of honeybee colonies. Apidologie 2015, 46, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Barlow, S.E.; O’Neill, M.A. Technological advances in field studies of pollinator ecology and the future of e-ecology. Curr. Opin. Insect Sci. 2020, 38, 15–25. [Google Scholar] [CrossRef]
- Voskarides, S.; Josserand, L.; Martin, J.P.; Novales, C.; Micheletto, D. Electronic Bee–Hive (E–Ruche) Project. In Proceedings of the Conference VIVUS-Environmentalism, Agriculture, Horticulture, Food Production and Processing Knowledge and Experience for New Entrepreneurial Opportunities, Naklo, Slovenia, 24–25 April 2013; pp. 311–319. [Google Scholar]
- Braga, A.R.; Gomes, D.G.; Rogers, R.; Hassler, E.E.; Freitas, B.M.; Cazier, J.A. A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Comput. Electron. Agric. 2020, 169, 105161. [Google Scholar] [CrossRef]
- Debauche, O.; El Moulat, M.; Mahmoudi, S.; Boukraa, S.; Manneback, P.; Lebeau, F. Web monitoring of bee health for researchers and beekeepers based on the internet of things. Procedia Comput. Sci. 2018, 130, 991–998. [Google Scholar] [CrossRef]
- Murphy, F.E.; Magno, M.; Whelan, P.; Vici, E.P. b+ WSN: Smart beehive for agriculture, environmental, and honey bee health monitoring—Preliminary results and analysis. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; pp. 1–6. [Google Scholar]
- Murphy, F.E.; Magno, M.; O’Leary, L.; Troy, K.; Whelan, P.; Popovici, E.M. Big brother for bees (3B)—Energy neutral platform for remote monitoring of beehive imagery and sound. In Proceedings of the 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015; pp. 106–111. [Google Scholar]
- Chazette, L.; Becker, M.; Szczerbicka, H. Basic algorithms for bee hive monitoring and laser-based mite control. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar]
- Gil-Lebrero, S.; Quiles-Latorre, F.J.; Ortiz-López, M.; Sánchez-Ruiz, V.; Gámiz-López, V.; Luna-Rodríguez, J.J. Honey bee colonies remote monitoring system. Sensors 2017, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Kviesis, A.; Zacepins, A.; Durgun, M.; Tekin, S. Application of wireless sensor networks in precision apiculture. Eng. Rural Dev. 2015, 20, 440–445. [Google Scholar]
- Yang, C.; Collins, J. A model for honey bee tracking on 2D video. In Proceedings of the 2015 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New Zealand, 23–24 November 2015; pp. 1–6. [Google Scholar]
- Yang, C.; Collins, J.; Beckerleg, M. A Model for Pollen Measurement Using Video Monitoring of Honey Bees. Sens. Imaging 2018, 19, 2. [Google Scholar] [CrossRef]
- Yang, C.; Collins, J. Improvement of honey bee tracking on 2D video with hough transform and Kalman filter. J. Signal Process. Syst. 2018, 90, 1639–1650. [Google Scholar] [CrossRef]
- Kimura, T.; Ohashi, M.; Crailsheim, K.; Schmickl, T.; Odaka, R.; Ikeno, H. Tracking of Multiple Honey Bees on a Flat Surface. In Proceedings of the 2012 Fifth International Conference on Emerging Trends in Engineering and Technology, Himeji, Japan, 5–7 November 2012; pp. 36–39. [Google Scholar]
- Chen, C.; Yang, E.-C.; Jiang, J.A.; Lin, T.T. An imaging system for monitoring the in-and-out activity of honey bees. Comput. Electron. Agric. 2012, 89, 100–109. [Google Scholar] [CrossRef]
- Ngo, T.N.; Wu, K.C.; Yang, E.-C.; Lin, T.T. A real-time imaging system for multiple honey bee tracking and activity monitoring. Comput. Electron. Agric. 2019, 163, 104841. [Google Scholar] [CrossRef]
- Terenzi, A.; Cecchi, S.; Spinsante, S.; Orcioni, S.; Piazza, F. Real-time System Implementation for Bee Hives Weight Measurement. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 231–236. [Google Scholar]
- Cecchi, S.; Terenzi, A.; Orcioni, S.; Riolo, P.; Ruschioni, S.; Isidoro, N. A Preliminary Study of Sounds Emitted by Honey Bees in a Beehive. In Audio Engineering Society Convention 144; Audio Engineering Society: Milan, Italy, 2018. [Google Scholar]
- Cecchi, S.; Terenzi, A.; Orcioni, S.; Spinsante, S.; Mariani Primiani, V.; Moglie, F.; Ruschioni, S.; Mattei, C.; Riolo, P.; Isidoro, N. Multi-sensor platform for real time measurements of honey bee hive parameters. IOP Conf. Ser. Earth Environ. Sci. 2019, 275. [Google Scholar] [CrossRef]
- Zacepins, A.; Pecka, A.; Osadcuks, V.; Kviesis, A.; Engel, S. Solution for automated bee colony weight monitoring. Agron. Res. 2017, 15, 585–593. [Google Scholar]
- Seritan, G.C.; Enache, B.; Argatau, F.C.; Adochiei, F.C.; Toader, S. Low cost platform for monitoring honey production and bees health. In Proceedings of the 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 24–26 May 2018; pp. 1–4. [Google Scholar]
- Getting Started with Load Cells. Available online: https://learn.sparkfun.com/tutorials/getting-started-with-load-cells (accessed on 8 May 2020).
- 24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales. Available online: https://cdn.sparkfun.com/assets/b/f/5/a/e/hx711F_EN.pdf (accessed on 8 May 2020).
- Anand, N.; Raj, V.B.; Ullas, M.S.; Srivastava, A. Swarm Detection and Beehive Monitoring System using Auditory and Microclimatic Analysis. In Proceedings of the 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), Bangalore, India, 3–5 October 2018; pp. 1–4. [Google Scholar]
- Flores, J.M.; Gil-Lebrero, S.; Gámiz, V.; Rodríguez, M.I.; Ortiz, M.A.; Quiles, F.J. Effect of the climate change on honey bee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Sci. Total Environ. 2019, 653, 1111–1119. [Google Scholar] [CrossRef]
- Shaghaghi, N.; Liang, L.; Yabe, Y.; Lama, S.; Mayer, J.; Ferguson, P. Identifying Beehive Frames Ready For Harvesting. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17–20 October 2019; pp. 1–4. [Google Scholar]
- Ochoa, I.Z.; Gutierrez, S.; Rodríguez, F. Internet of Things: Low Cost Monitoring BeeHive System using Wireless Sensor Network. In Proceedings of the 2019 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Rio, Veracruz, Mexico, 14–17 October 2019; Volume 1, pp. 1–7. [Google Scholar]
- Khairul Anuar, N.H.; Amri Md Yunus, M.; Baharuddin, M.A.; Sahlan, S.; Abid, A.; Ramli, M.M.; Razzi Abu Amin, M.; Mohd Lotpi, Z.F. IoT Platform for Precision Stingless Bee Farming. In Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29–29 June 2019; pp. 225–229. [Google Scholar]
- Zabasta, A.; Kunicina, N.; Kondratjevs, K.; Ribickis, L. IoT Approach Application for Development of Autonomous Beekeeping System. In Proceedings of the 2019 International Conference in Engineering Applications (ICEA), Sao Miguel, Portugal, 8–11 July 2019; pp. 1–6. [Google Scholar]
- Yusof, Z.M.; Billah, M.M.; Kadir, K.; Ali, A.M.M.; Ahmad, I. Improvement of Honey Production: A Smart Honey Bee Health Monitoring System. In Proceedings of the 2019 IEEE International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Kuala Lumpur, Malaysia, 27–29 August 2019; pp. 1–5. [Google Scholar]
- INA333 Micro-Power (50 μA), Low-Power, Zero-Drift, Precision Instrumentation Amplifier Datasheet. Available online: http://www.ti.com/lit/gpn/ina333 (accessed on 8 May 2020).
- Rybin, V.G.; Butusov, D.N.; Karimov, T.I.; Belkin, D.A.; Kozak, M.N. Embedded data acquisition system for beehive monitoring. In Proceedings of the 2017 IEEE II International Conference on Control in Technical Systems (CTS), St. Petersburg, Russia, 25–27 October 2017; pp. 387–390. [Google Scholar]
- Bayir, R.; Albayrak, A. The monitoring of nectar flow period of honey bees using wireless sensor networks. Int. J. Distrib. Sens. Netw. 2016, 12. [Google Scholar] [CrossRef]
- Fitzgerald, D.W.; Murphy, F.E.; Wright, W.M.D.; Whelan, P.M.; Popovici, E.M. Design and development of a smart weighing scale for beehive monitoring. In Proceedings of the 2015 26th Irish Signals and Systems Conference (ISSC), Carlow, Ireland, 24–25 June 2015; pp. 1–6. [Google Scholar]
- Ntalampiras, S.; Potamitis, I.; Fakotakis, N. Acoustic Detection of Human Activities in Natural Environments. J. Audio Eng. Soc. 2012, 60, 686–695. [Google Scholar]
- Frings, H.; Little, F. Reactions of honey bees in the hive to simple sounds. Science 1957, 125, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, A.; Kirchner, W.H.; Lindauer, M. Sound and vibrational signals in the dance language of the honeybee, Apis mellifera. Behav. Ecol. Sociobiol. 1986, 18, 207–212. [Google Scholar] [CrossRef]
- Kirchner, W. Acoustical communication in honeybees. Apidologie 1993, 24, 297–307. [Google Scholar] [CrossRef]
- Hrncir, M.; Barth, F.G.; Tautz, J. Vibratory and airborne sound-signals in bee communication. In Insect Sounds and Communication: Physiology, Behaviour, Ecology, and Evolution; Drosopoulos, S., Claridge, M., Eds.; CRC Press Taylor and Francis: Boca Raton, FL, USA, 2006; pp. 421–436. [Google Scholar]
- Hunt, J.; Richard, F. Intracolony vibroacoustic communication in social insects. Insectes Sociaux 2013, 60, 403–417. [Google Scholar] [CrossRef]
- Bencsik, M.; Bencsik, J.; Baxter, M.; Lucian, A.; Romieu, J.; Millet, M. Identification of the honey bee swarming process by analysing the time course of hive vibrations. Comput. Electron. Agric. 2011, 76, 44–50. [Google Scholar] [CrossRef]
- Dietlein, D. A method for remote monitoring of activity of honeybee colonies by sound analysis. J. Apic. Res. 1985, 24, 176–183. [Google Scholar] [CrossRef]
- Ferrari, S.; Silva, M.; Guarino, M.; Berckmans, D. Monitoring of swarming sounds in bee hives for prevention of honey loss. In Proceedings of the International Workshop on Smart Sensors in Livestock Monitoring, Gargnano, Italy, 22–23 September 2006; pp. 34–35. [Google Scholar]
- Ferrari, S.; Silva, M.; Guarino, M.; Berckmans, D. Monitoring of swarming sounds in beehives for early detection of the swarming period. Comput. Electron. Agric. 2008, 65, 72–77. [Google Scholar] [CrossRef]
- Qandour, A.; Ahmad, I.; Habibi, D.; Leppard, M. Remote beehive monitoring using acoustic signals. Acoust. Aust. 2014, 42, 204–209. [Google Scholar]
- Robles-Guerrero, A.; Saucedo-Anaya, T.; González-Ramérez, E.; Galván-Tejada, C.E. Frequency Analysis of Honey Bee Buzz for Automatic Recognition of Health Status: A Preliminary Study. Res. Comput. Sci. 2017, 142, 89–98. [Google Scholar] [CrossRef]
- Eren, H.; Whiffler, L.; Manning, R. Electronic sensing and identification of queen bees in honeybee colonies. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada, 19–21 May 1997. [Google Scholar]
- Cejrowski, T.; Szymański, J.; Mora, H.; Gil, D. Detection of the bee queen presence using sound analysis. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Dong Hoi City, Vietnam, 19–21 March 2018; pp. 297–306. [Google Scholar]
- Berry, J. System to Detect the Presence of a Queen Bee in a Hive. U.S. Patent US77785606P, 1 March 2007. [Google Scholar]
- Bromenshenk, J.J. Honey Bee Acoustic Recording and Analysis System for Monitoring Hive Health. U.S. Patent No. 7,549,907, 8 January 2007. [Google Scholar]
- Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward audio beehive monitoring: Deep learning vs. standard machine learning in classifying beehive audio samples. Appl. Sci. 2018, 8, 1573. [Google Scholar] [CrossRef] [Green Version]
- Nolasco, I.; Terenzi, A.; Cecchi, S.; Orcioni, S.; Bear, H.; Benetos, E. Audio-based identification of beehive states. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019. [Google Scholar]
- Zgank, A. Bee Swarm Activity Acoustic Classification for an IoT-Based Farm Service. Sensors 2020, 20, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cetin, U. The effects of temperature changes to bee losts. Uludag Bee J. 2004, 4, 171–174. [Google Scholar]
- Seeley, T.; Heinrich, B. Regulation of temperature in the nests of social insects. In Insect Thermoregulation; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Southwick, E.E. Metabolic energy of intact honey bee colonies. Comp. Biochem. Physiol. Part A Physiol. 1982, 71, 277–281. [Google Scholar] [CrossRef]
- Seeley, T. Honeybee Ecology: A Study of Adaptation in Social Life; Princeton University Press: Princeton, NJ, USA, 1985. [Google Scholar]
- Hazelhoff, E. Ventilation in a beehive during summer. Physiol. Comp. Et. Oecol. 1954, 3, 342–364. [Google Scholar]
- Kviesis, A.; Zacepins, A. System architectures for real-time bee colony temperature monitoring. Procedia Comput. Sci. 2015, 43, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Kviesis, A.; Komasilovs, V.; Komasilova, O.; Zacepins, A. Application of fuzzy logic for honey bee colony state detection based on temperature data. Biosyst. Eng. 2020, 193, 90–100. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Owayss, A.A.; Ibrahim, Y.Y.; Basuny, N.K. A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux 2017, 64, 455–463. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W.; Dietemann, V. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften 2006, 93, 397–401. [Google Scholar] [CrossRef]
- Reyes, O.; Ávila, A.; Sebastian Eslava, G.; Rozo, G. Beekeeping monitoring module. In Proceedings of the IEEE 4th Colombian Workshop on Circuits and Systems (CWCAS), Barranquilla, Colombia, 1–2 November 2012; pp. 1–6. [Google Scholar]
- Nicolas, G.; Sillans, D. Immediate and Latent Effects of Carbon Dioxide on Insects. Annu. Rev. Entomol. 1989, 34, 97–116. [Google Scholar] [CrossRef]
- Southwick, E.; Moritz, R. Social control of air ventilation in colonies of honey bees, Apis mellifera. J. Insect Physiol. 1987, 33, 623–626. [Google Scholar] [CrossRef]
- Seeley, T. Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. J. Insect Physiol. 1974, 20, 2301–2305. [Google Scholar] [CrossRef]
- Sparkfun 50 kg Load Sensor. Available online: https://www.sparkfun.com/datasheets/Sensors/loadsensor.pdf (accessed on 8 May 2020).
- Catania, P.; Vallone, M. Application of A Precision Apiculture System to Monitor Honey Daily Production. Sensors 2020, 20, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raspberry Pi Documentation-Pigpio Library. Available online: https://www.raspberrypi.org/documentation/usage/gpio/ (accessed on 5 April 2020).
- Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM 100:2008-GUM 1995 with Minor Corrections; Joint Committee for Guides in Metrology: Sèvres, France, 2008.
- ADMP401 Mems Microphone. Available online: https://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP401.pdf (accessed on 8 May 2020).
- DHT22 Temperature Humidity Temperature Sensor. Available online: https://learn.sparkfun.com/tutorials/rht03-dht22-humidity-and-temperature-sensor-hookup-guide/all (accessed on 8 May 2020).
- Telaire TL6615 CO2 Sensor. Available online: https://www.amphenol-sensors.com/en/telaire/co2/525-co2-sensor-modules/319-t6615 (accessed on 8 May 2020).
- ICT International. Bee Hive Meter for Monitoring Colony Strength and Productivity. Available online: http://ictinternational.com/content/uploads/2017/07/Case-Study_Bee-Hive-Meter.pdf (accessed on 8 May 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecchi, S.; Spinsante, S.; Terenzi, A.; Orcioni, S. A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring. Sensors 2020, 20, 2726. https://doi.org/10.3390/s20092726
Cecchi S, Spinsante S, Terenzi A, Orcioni S. A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring. Sensors. 2020; 20(9):2726. https://doi.org/10.3390/s20092726
Chicago/Turabian StyleCecchi, Stefania, Susanna Spinsante, Alessandro Terenzi, and Simone Orcioni. 2020. "A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring" Sensors 20, no. 9: 2726. https://doi.org/10.3390/s20092726
APA StyleCecchi, S., Spinsante, S., Terenzi, A., & Orcioni, S. (2020). A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring. Sensors, 20(9), 2726. https://doi.org/10.3390/s20092726