Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment
"> Figure 1
<p>Schemes to (<b>a</b>) synthesize molecularly imprinted polymers with quantum dots (MIP-QD) composites, (<b>b</b>) pretreat polyimide substrates (PIs) with capacitively coupled plasma (CCP), (<b>c</b>) coat the MIP-QDs on the plasma-treated PIs, and (<b>d</b>) strip the tetracycline (Tc) templates from the PIs. Scanning electron microscope (SEM) images of the cross-section and a top surface of the complete MIP-plasma-PI are inserted in (<b>c</b>).</p> "> Figure 2
<p>The dependence of various plasma gases on the total surface free energies, <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mi>S</mi> </msub> </mrow> </semantics></math> (●), of the PI substrates and on the fluorescence intensity, F<sub>0</sub> (○), of the Tc-stripped MIP-plasma-PIs. The plasma was powered at 90 W for 1.0 min with a gas flow of 10 sccm.</p> "> Figure 3
<p>The dependence of O<sub>2</sub> plasma duration on the total (<math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mi>S</mi> </msub> </mrow> </semantics></math>, ●), dispersive (<math display="inline"><semantics> <mrow> <msubsup> <mi>γ</mi> <mi>S</mi> <mi>D</mi> </msubsup> </mrow> </semantics></math>, <b>×</b>), acid (<math display="inline"><semantics> <mrow> <msubsup> <mi>γ</mi> <mi>S</mi> <mo>+</mo> </msubsup> </mrow> </semantics></math>, ▼), and base (<math display="inline"><semantics> <mrow> <msubsup> <mi>γ</mi> <mi>S</mi> <mo>−</mo> </msubsup> </mrow> </semantics></math>, ▲) surface free energies of PI substrates and on the fluorescence intensity, F<sub>0</sub> (○), of the Tc-stripped MIP-plasma-PIs. The plasma was powered at 90 W with an O<sub>2</sub> flow of 10 sccm.</p> "> Figure 4
<p>The Fourier transform infrared (FTIR) spectra of (<b>a</b>) intact PI, (<b>b</b>) plasma-treated PI, and (<b>c</b>) MIP-plasma-PI.</p> "> Figure 5
<p>Fluorescence spectra of (<b>a</b>) MIP-plasma-PI, (<b>b</b>) Tc-stripped MIP-plasma-PI, (<b>c</b>) MIP-chem-PI, (<b>d</b>) Tc-stripped MIP-chem-PI, (<b>e</b>) CdTe QDs, and (<b>f</b>) NIP-plasma-PI. Excitation was set at 315 nm. Subfigures (<b>c</b>–<b>e</b>) were used in ref. [<a href="#B21-sensors-20-02723" class="html-bibr">21</a>].</p> "> Figure 6
<p>Correlation of the Tc concentration with the (○) Δ F, (Δ) F<sub>0</sub>/F, and (□) ln(F<sub>0</sub>/F) values for the MIP-plasma-PIs in phosphate buffer (pH 7.6, 50 mM). The insert shows the fluorescence spectra at different concentrations of Tc.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of Molecularly Imprinted Polymers with Quantum Dots (MIP-QD) Composites Coated on Plasma-Treated Polyimide (PI) Substrates
2.2.1. Preparation of the MIP-QDs
2.2.2. PI Substrates Treated with Capacitively Coupled Plasma and Coated with MIP-QDs
2.2.3. Stripping
2.2.4. Measurement of Contact Angle and Fluorescence
2.3. Selectivity and Stability of the MIP-Plasma-PIs
2.3.1. Imprinting Factors
2.3.2. Recoveries of Tetracycline (Tc) Samples Spiked in Biomatrices
2.3.3. Storage Stability of MIP-Plasma-PI
3. Results and Discussion
3.1. Fabrication of Tc-Templated MIP-QDs on Plasma-Treated PI Substrates
3.1.1. Treatments of Plasma on PI Substrates
3.1.2. Coating of the Prepared MIP-QDs on PIs
3.1.3. Stripping and Sensing the Tc Template
3.2. Fluorescent Measurements of Tetracycline by MIP-QDs on PIs
3.2.1. Imprinting Factors
3.2.2. Dose Response
3.2.3. Detection of Tc in Biomatrices
3.2.4. Storage of MIP-Plasma-PIs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Krcmar, P.; Kuritka, I.; Maslik, J.; Urbanek, P.; Bazant, P.; Machovsky, M.; Suly, P.; Merka, P. Fully inkjet-printed CuO sensor on flexible polymer substrate for alcohol vapours and humidity sensing at room temperature. Sensors 2019, 19, 3068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thangarasu, R.; Thangavel, E.; Chandrasekaran, J.; Balasundaram, O.N. Synthesis, characterization and gas sensing performance of V2O5 nano-structure on PET substrate. J. Mater. Sci. Mater. Electron. 2019, 30, 4238–4249. [Google Scholar] [CrossRef]
- Merdj, F.; Mekki, A.; Guettiche, D.; Mettai, B.; Sayah, Z.B.D.; Safidine, Z.; Abdi, A.; Mahmoud, R.; Chehimi, M.M. Highly ammonia sensing using direct in situ electro-deposited polypyrrole-dodecylbenzene sulfonic acid film on ITO coated flexible substrates. Macromol. Res. 2018, 26, 511–520. [Google Scholar] [CrossRef]
- Naghdi, T.; Golmohammadi, H.; Vosough, M.; Atashi, M.; Saeedi, I.; Maghsoudi, M.T. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit. Anal. Chimica. Acta 2019, 1070, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Ou, P.F.; Zhu, J.; Song, P.F.; Yang, J.Q.; Wu, Y. Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. ACS Appl. Nano Mater. 2019, 2, 7626–7636. [Google Scholar] [CrossRef]
- Mahmoudifard, M.; Vossoughi, M.; Soudi, S.; Soleimani, M. Electrospun polyethersolfone nanofibrous membrane as novel platform for protein immobilization in microfluidic systems. J. Biomed. Mater. Res. B 2018, 106, 1108–1120. [Google Scholar] [CrossRef]
- Yamamoto, S.; Okada, K.; Sasaki, N.; Chang, A.C.; Yamaguchi, K.; Nakanishi, J. Photoactivatable hydrogel interfaces for resolving the interplay of chemical, mechanical, and geometrical regulation of collective cell migration. Langmuir 2019, 35, 7459–7468. [Google Scholar] [CrossRef]
- Rubsam, K.; Stomps, B.; Boker, A.; Jakob, F.; Schwaneberg, U. Anchor peptides: A green and versatile method for polypropylene functionalization. Polymer 2017, 116, 124–132. [Google Scholar] [CrossRef]
- Alpat, B.; Gulgun, M.A.; Corapcioglu, G.; Yildizhan, M.M.; Di Lazzaro, P.; Murra, D.; Kaplanoglu, T.; Postolache, V.; Mengali, S.; Simeoni, M.; et al. Testing of substrates for flexible optical solar reflectors: Irradiations of nano-hybrid coatings of polyimide films with 20 keV electrons and with 200–400 nm ultraviolet radiation. J. Instrum. 2019, 14, T06003. [Google Scholar] [CrossRef]
- Liu, W.; Huang, Y.H.; Peng, Y.D.; Walczak, M.; Wang, D.; Chen, Q.; Liu, Z.; Li, L. Stable wearable strain sensors on textiles by direct laser writing of graphene. ACS Appl. Nano Mater. 2020, 3, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Kim, B.H.; Kwon, S.H.; Yoon, Y.J. Growth behavior of SiO2 films on polyimide substrates after ion-beam treatment. J. Korean Phys. Soc. 2019, 75, 591–596. [Google Scholar] [CrossRef]
- Du, L.L.; Zhang, J.W.; Li, Y.P.; Xu, M.S.; Wang, Q.P.; Song, A.M.; Xin, Q. High-performance flexible Schottky diodes based on sputtered InGaZnO. IEEE Trans. Electron Devices 2018, 65, 4326–4333. [Google Scholar] [CrossRef]
- Manjunatha, H.C. A study of gamma attenuation parameters in poly methyl methacrylate and Kapton. Radiat. Phys. Chem. 2017, 137, 254–259. [Google Scholar] [CrossRef]
- Park, B.G.; Lee, C.J.; Jung, S.B. Enhancing adhesion strength of photonic sintered screen-printed Ag circuit by atmospheric pressure plasma. Microelectron. Eng. 2018, 202, 37–41. [Google Scholar] [CrossRef]
- Chen, C.C.; Wang, F.H.; Chang, S.C.; Yang, C.F. Using oxygen plasma pretreatment to enhance the properties of F-doped ZnO films prepared on polyimide substrates. Materials 2018, 11, 1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.M.; Chen, Y.Z.; Wang, J.Z.; Zhu, K.; Jia, L.P.; Wang, S.X.; He, W.; Chen, Q.G.; Miao, H.; Zhou, J.Q. Enhancing adhesion performance of sputtering Ti/Cu film on pretreated composite prepreg for stacking structure of IC substrates. Compos. B Eng. 2019, 158, 400–405. [Google Scholar] [CrossRef]
- Pavlenko, V.I.; Cherkashina, N.I.; Zaitsev, S.V. Fabrication and characterization of nanocomposite films Al, Cu/Al and Cr/Al formed on polyimide substrate. Acta Astronaut. 2019, 160, 489–498. [Google Scholar] [CrossRef]
- Huang, W.Z.; Gan, X.Y.; Zhu, L. Fabrication and property of novel double-layer coating deposited on polyimide matrix composites by atmospheric plasma spraying. Ceram. Int. 2018, 44, 5473–5485. [Google Scholar] [CrossRef]
- Male, U.; Huh, D.S. Fabrication of robust honeycomb patterned porous films by thermochemical cross-linking of polyimide. Polymers 2019, 178, 121597. [Google Scholar] [CrossRef]
- Yang, T.; Yu, Y.Z.; Zhu, L.S.; Wu, X.; Wang, X.H.; Zhang, J. Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B Chem. 2015, 208, 327–333. [Google Scholar] [CrossRef]
- Chen, J.L. Determination of tetracycline using imprinted polymethacrylates along with fluorescent CdTe quantum dots on plastic substrates. Microchim. Acta 2017, 184, 1335–1343. [Google Scholar] [CrossRef]
- Lee, E.; Lee, S.G.; Cho, K. Direct growth of substrate-adhered graphene on flexible polymer substrates for soft electronics. Chem. Mater. 2019, 31, 4451–4459. [Google Scholar] [CrossRef]
- Madaka, R.; Kanneboina, V.; Agarwal, P. Exploring the photo paper as flexible substrate for fabrication of a-Si:H based thin film solar cells at low temperature (110 °C): Influence of radio frequency power on opto-electronic properties. Thin Solid Films 2018, 662, 155–164. [Google Scholar] [CrossRef]
- Lesiak, A.; Drzozga, K.; Cabaj, J.; Banski, M.; Malecha, K.; Podhorodecki, A. Optical sensors based on II-VI quantum dots. Nanomaterials 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 2017, 12, 5421–5431. [Google Scholar] [CrossRef] [Green Version]
- Chao, M.R.; Hu, C.W.; Chen, J.L. Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Microchim. Acta 2016, 183, 1323–1332. [Google Scholar] [CrossRef]
- Martin-Trasanco, R.; Esparza-Ponce, H.E.; Ortiz, P.D.; Oyarzun, D.P.; Zuniga, C.; Montero-Cabrera, M.E.; Tundidor-Camba, A.; Pizarro, G.D.; Arratia-Perez, R. In-situ preparation of CdTe quantum dots capped with beta-cyclodextrin-epichlorohydrin polymer: Polymer influence on the nanocrystal’s optical properties. Nanomaterials 2018, 8, 948. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.L.; Liu, C.H.; Kumari, M.; Wu, W.C.; Wang, C.C. Biocompatible quantum dot-antibody conjugate for cell imaging, targeting and fluorometric immunoassay: Crosslinking, characterization and applications. RSC Adv. 2019, 9, 32791–32803. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.H.; Du, C.C.; Zhang, J.L.; Shang, M.X.; Song, W.B. A system composed of vanadium(IV) disulfide quantum dots and molybdenum(IV) disulfide nanosheets for use in an aptamer-based fluorometric tetracycline assay. Microchim. Acta 2019, 186, 837. [Google Scholar] [CrossRef]
- Chao, M.R.; Hu, C.W.; Chen, J.L. Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors. Biosens. Bioelectron. 2014, 61, 471–477. [Google Scholar] [CrossRef]
- Chao, M.R.; Hu, C.W.; Chen, J.L. Fluorescent turn-on detection of cysteine using a molecularly imprinted polyacrylate linked to allylthiol-capped CdTe quantum dots. Microchim. Acta 2014, 181, 1085–1091. [Google Scholar] [CrossRef]
- Lin, C.I.; Joseph, A.K.; Chang, C.K.; Lee, Y.D. Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells. Biosens. Bioelectron. 2004, 20, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour, H.; Hosseini, S.M.M. A solid-phase luminescence sensor based on molecularly imprinted polymer-CdSeS/ZnS quantum dots for selective extraction and detection of sulfasalazine in biological samples. Talanta 2019, 194, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.R.; Hu, C.W.; Chen, J.L. Glass substrates crosslinked with tetracycline-imprinted polymeric silicate and CdTe quantum dots as fluorescent sensors. Anal. Chimica. Acta 2016, 925, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 1988, 4, 884–891. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Öpik, A.; Furchner, A.; Syritski, V. Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens. Bioelectron. 2018, 118, 102–107. [Google Scholar] [CrossRef]
- Ruedas-Rama, M.J.; Hall, E.A.H. A quantum dot–lucigenin probe for Cl–. Analyst 2008, 133, 1556–1566. [Google Scholar] [CrossRef]
BSA (μg∙mL−1) | FBS (ppt, μL∙mL−1) ** | ||||||||
---|---|---|---|---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
99 (2.8) * | 98 (3.5) | 98 (3.2) | 93 (8.6) | 89 (9.5) | 97 (3.0) | 98 (2.8) | 93 (3.5) | 92 (5.8) | 90 (8.5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, C.-B.; Chen, J.-L. Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment. Sensors 2020, 20, 2723. https://doi.org/10.3390/s20092723
Ke C-B, Chen J-L. Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment. Sensors. 2020; 20(9):2723. https://doi.org/10.3390/s20092723
Chicago/Turabian StyleKe, Ching-Bin, and Jian-Lian Chen. 2020. "Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment" Sensors 20, no. 9: 2723. https://doi.org/10.3390/s20092723
APA StyleKe, C. -B., & Chen, J. -L. (2020). Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment. Sensors, 20(9), 2723. https://doi.org/10.3390/s20092723