A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications
<p>Block diagram of the proposed acoustic sensing platform.</p> "> Figure 2
<p>Frequency planning.</p> "> Figure 3
<p>Schematics of (<b>a</b>) the two-stage microphone amplifier; and (<b>b</b>) each two-stage operational amplifier (OTA).</p> "> Figure 4
<p>Principle of microphone automatic gain control (AGC) loop.</p> "> Figure 5
<p>Phase-locked loop (PLL) block diagram.</p> "> Figure 6
<p>Schematic of the ring voltage-controlled oscillator (VCO).</p> "> Figure 7
<p>Resistances of <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>p</mi> <mi>h</mi> <mi>r</mi> <mi>i</mi> <mi>p</mi> <mi>o</mi> <mi>l</mi> <mi>y</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mi>w</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> </msub> </semantics></math>, and transconductance of <math display="inline"><semantics> <msub> <mi>M</mi> <mn>2</mn> </msub> </semantics></math> versus temperature.</p> "> Figure 8
<p>Schematic of class-E PA.</p> "> Figure 9
<p>(<b>a</b>) Chip microphotograph; (<b>b</b>) testing board; (<b>c</b>) a demo compared with a coin (front); and (<b>d</b>) a demo compared with a coin (back).</p> "> Figure 10
<p>The measured output frequency of the VCO.</p> "> Figure 11
<p>Frequency variations versus temperature with/without compensation.</p> "> Figure 12
<p>The measured phase noise of the PLL.</p> "> Figure 13
<p>The measured 160 kbps binary phase-shift keying (BPSK) spectrum.</p> "> Figure 14
<p>Measured error vector magnitude (EVM).</p> "> Figure 15
<p>Measured power consumption.</p> "> Figure 16
<p>Measured whole TX efficiency.</p> ">
Abstract
:1. Introduction
- Designed a binary/differential phase-shift keying (BPSK/DPSK) digital modulation -based wireless acoustic sensing IC, which has better noise immunity than the analog modulation approaches and can achieve data encryption feature.
- Developed an on-chip standby mode control to achieve better battery efficiency. A smart power control strategy makes it possible for the sensor to achieve a long transmission range as well as a long battery life. It is a more integrated approach than the off-chip microcontroller-based standby mode implementation reported in [16].
2. Block Diagram
3. Microphone Amplifier and Automatic Gain Control
4. Frequency Synthesizer with Temperature Compensation
5. Class-E PA
6. Test Circuits and Measurement Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Verma, N.; Hu, Y.; Huang, L.; Rieutort-Louis, W.S.A.; Robinson, J.S.; Moy, T.; Glisic, B.; Wagner, S.; Sturm, J.C. Enabling scalable hybrid systems: Architectures for exploiting large-area electronics in applications. Proc. IEEE 2015, 103, 690–712. [Google Scholar] [CrossRef]
- Gangone, M.V.; Whelan, M.J.; Janoyan, K.D. Wireless monitoring of a multispan bridge superstructure for diagnostic load testing and system identification. Comput.-Aided Civ. Infrastruct. Eng. 2011, 26, 560–579. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, H.; Wang, Z.W. A 0.0014 mm2 150 nW CMOS temperature sensor with nonlinearity characterization and calibration for the −60 to +40 °C measurement range. Sensors 2019, 19, 1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Gotarredona, T.; Linares-Barranco, B. A 128 × 128 1.5% contrast sensitivity 0.9% FPN 3 μs latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers. IEEE J. Solid-State Circuits 2013, 48, 827–838. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, Q.; Zou, W.; Zhang, R.; Zhang, W. A generalized pyramid matching kernel for human action recognition in realistic videos. Sensors 2013, 13, 14398–14416. [Google Scholar] [CrossRef] [Green Version]
- Crocco, M.; Cristani, M.; Trucco, A.; Murino, V. Audio surveillance: A systematic review. ACM Comput. Surv. 2016, 48, 52. [Google Scholar] [CrossRef]
- Hilal, R.A.; Sayedelahl, A.; Tabibiazar, A.; Kamel, S.M.; Basir, A.O. A distributed sensor management for large-scale IoT indoor acoustic surveillance. Future Gener. Comput. Syst. 2018, 86, 1170–1184. [Google Scholar] [CrossRef]
- Foggia, P.; Petkov, N.; Saggese, A.; Strisciuglio, N.; Vento, M. Audio surveillance of roads: A system for detecting anomalous sounds. IEEE Trans. Intell. Transp. Syst. 2016, 17, 279–288. [Google Scholar] [CrossRef]
- Intani, P.; Orachon, T. Crime warning system using image and sound processing. In Proceedings of the 13th International Conference on Control, Automation and Systems (ICCAS), Gwangju, Korea, 20–23 October 2013; pp. 1751–1753. [Google Scholar]
- Peckens, C.; Porter, C.; Rink, T. Wireless sensor networks for long-term monitoring of urban noise. Sensors 2018, 18, 3161. [Google Scholar] [CrossRef] [Green Version]
- Gan, Q.; Yu, S.; Li, C.; Lv, J.; Lin, Z.; Chen, P. Design and ARM-embedded implementation of a chaotic map-based multicast scheme for multiuser speech wireless communication. Int. J. Circuit Theory Appl. 2017, 45, 1849–1872. [Google Scholar] [CrossRef] [Green Version]
- Huehne, K.; Bader, S.; Coffing, D.; Durec, J.; Hester, R.; Lovelace, D.; Main, E.; Ovalle, P.; Tang, R.; Welty, D.; et al. A low power 900 MHz transmitter IC with audio baseband for ISM applications using 0.25 μm BiCMOS. In Proceedings of the 2000 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Boston, MA, USA, 10–13 June 2000. [Google Scholar]
- Neyer, A.; Thiel, T.B.; Heinen, S. A FM-radio transmitter concept based on an all-digital PLL. In Proceedings of the 2009 Ph.D. Research in Microelectronics and Electronics, Cork, Ireland, 12–17 July 2009; pp. 192–195. [Google Scholar]
- Zhou, L.; Annamalai, M.; Je, M.; Yao, L.; Heng, C.-H. A fully integrated temperature-independent reconfigurable acoustic transmitter with digital on-chip resistor temperature coefficient calibration for oil drilling application. IEEE Trans. Circuits Syst. II Express Breifs 2015, 62, 533–557. [Google Scholar] [CrossRef]
- Crepaldi, M.; Stoppa, M.; Ros, M.P.; Demarchi, D. An analog-mode impulse radio system for ultra-low power short-range audio streaming. IEEE Trans. Circuits Syst. I Regul. Paper 2015, 62, 2886–2897. [Google Scholar] [CrossRef]
- Chee, Y.H.; Niknejad, A.M.; Rabaey, J. A 46% efficient 0.8dBm transmitter for wireless sensor networks. In Symposium on VLSI Circuits Digest of Technical Papers; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Barbieri, A.; Nicollini, G. 100+ dB a-weighted SNR microphone preamplifier with on-chip decoupling capacitors. IEEE J. Solid-State Circuits 2012, 47, 2737–2750. [Google Scholar] [CrossRef]
- Eargle, J. Basic sound transmission and operational forces on microphones. In The Microphone Book, 3rd ed.; Elsevier, Focal Press: Waltham, MA, USA, 2012; Chapter 2; pp. 9–25. [Google Scholar]
- Hogervorst, R.; Tero, J.P.; Eschauzier, R.G.H.; Huijsing, J.H. A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries. IEEE J. Solid-State Circuits 1994, 29, 1505–1513. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-C.S.; Hemls, W.J.; Kuhn, J.A.; Byrkett, B.E. Digital-compatible high-performance operational amplifier with rail-to-rail input and output ranges. IEEE J. Solid-State Circuits 1994, 29, 63–66. [Google Scholar] [CrossRef]
- Texas Instruments Incorporated. Application Report: AN-1451 LM4935 Automatic Gain Control (AGC) Guide. Available online: http://www.ti.com/lit/an/snaa028a/snaa028a.pdf (accessed on 4 November 2019).
- Wang, Y.; Gao, B.; Li, P.; Ni, X.; Zhou, R. A RF CMOS GNSS receiver with a passive mixer for GPS L1/Galileo E1/Compass B1 band. IEICE Electron. Express 2018, 15, 20180551. [Google Scholar] [CrossRef] [Green Version]
- Lakshmikumar, K.R.; Mukundagiri, V.; Gierkink, S.L.J. A process and temperature compensated two-stage ring oscillator. In Proceedings of the 2007 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 16–19 September 2007; pp. 691–694. [Google Scholar]
- Leung, K.N.; Lo, C.H.; Mok, P.K.T. Temperature-compensated CMOS ring oscillator for power-management circuits. Electron. Lett. 2007, 43, 786–787. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Mukadam, M.Y.; Mukhopadhyay, I.; Apsel, A.B. Process compensation loops for high speed ring oscillators in sub-micron CMOS. IEEE J. Emerg. Sel. Top. Circuits Syst. 2011, 1, 59–70. [Google Scholar] [CrossRef]
- Alsuraisry, H.; Wu, M.-H.; Huang, P.-S.; Tsai, J.-H.; Huang, T.-W. 5.3 GHz 42% PAE class-E power amplifier with 532 mW/mm2 power area density in 180 nm CMOS process. Electron. Lett. 2016, 52, 1338–1340. [Google Scholar] [CrossRef]
- Brama, R.; Larcher, L.; Mazzanti, A.; Svelto, F. A 30.5 dBm 48% PAE CMOS class-E PA with integrated balun for RF applications. IEEE J. Solid-State Circuits 2008, 43, 1755–1762. [Google Scholar] [CrossRef]
- Dehqan, A.R.; Toofan, S.; Lotfi, H. Floating bulk cascode class-E power amplifier. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 537–541. [Google Scholar] [CrossRef]
- Gonsioroski, H.L.; da Silva Mello, L. Preliminary results of measurements of penetration losses through buildings at 2.5 GHz. In Proceedings of the 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), Rio de Janeiro, Brazil, 4–7 August 2013. [Google Scholar]
Parameter | [23] | [24] | [25] | This Work |
---|---|---|---|---|
Type | Ring | Ring | Ring | Ring |
Technology [nm] | 180 | 130 | 90 | 180 |
Supply voltage [V] | 3 | 1.1 | 1 | 1.8 |
Frequency [MHz] | 1.9 | 1250 | 2150/2900 | 433.92 |
Area [mm | 0.22 | 0.014 | 0.096 | 0.044 |
Temperature range [C] | −40–80 | −40–125 | −7–67 | −25–125 |
Temperature sensitivity [ppm/C] | 92.8 | 340 | 168/290 | 307 |
Parameter | [12] | [14] | [16] | This Work |
---|---|---|---|---|
Technology | 0.25 m BiCMOS | 1 m SOI | 130 nm CMOS | 180 nm CMOS |
Physical signal type | Acoustic | Acoustic (high | Temperature/Tilt/ | Acoustic |
for sensing | temperature) | Acceleration | ||
Operating frequency [MHz] | 900 | 1.4 | 1900 | 433.92 |
Modulation | FM | OOK/Chirp | OOK | BPSK/DPSK |
Standby Mode | No | No | Yes (off-chip) | Yes (on-chip) |
Supply voltage * [V] | 1.8–2.8 | 5 | 0.65 | 1.8 (2.5 for PA) |
VCO tuning range [MHz] | 891–939 | 1.376–1.424 | N.A. | 290–1040 |
PLL phase noise | N.A. | N.A. | N.A. | −100.36 dBc/Hz |
@ 1 MHz offset | ||||
Output power [dBm] | 3 | N.A. | 0.8 | 5.7 |
Area * [mm | 1.215 | 27.5 | 1 | 1.76 |
Power consumption * [mW] | 26 | 12–19 | 1.35 | Normal mode: 25.1 |
Standby mode: 0.058 | ||||
Transmission distance | N.A. | N.A. | N.A. | >500 m |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, R.; Liu, Z.; Yan, B. A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications. Sensors 2020, 20, 178. https://doi.org/10.3390/s20010178
Wang Y, Zhou R, Liu Z, Yan B. A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications. Sensors. 2020; 20(1):178. https://doi.org/10.3390/s20010178
Chicago/Turabian StyleWang, Yong, Ranran Zhou, Zhenyue Liu, and Bingbo Yan. 2020. "A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications" Sensors 20, no. 1: 178. https://doi.org/10.3390/s20010178
APA StyleWang, Y., Zhou, R., Liu, Z., & Yan, B. (2020). A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications. Sensors, 20(1), 178. https://doi.org/10.3390/s20010178