A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics
<p>Generative and inference modeling similarities.</p> "> Figure 2
<p>Generative Adversarial Networks (GANs).</p> "> Figure 3
<p>Variational autoencoder.</p> "> Figure 4
<p>Proposed deep generative methodology for remaining useful life estimation.</p> "> Figure 5
<p>Forward graphical model for the proposed mathematical framework.</p> "> Figure 6
<p>Inference training model.</p> "> Figure 7
<p>Simplified diagram of engine simulated in the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) [<a href="#B32-sensors-20-00176" class="html-bibr">32</a>].</p> "> Figure 8
<p>CMAPSS Sensor measurement 11 and remaining useful life (RUL) versus cycle.</p> "> Figure 9
<p>FD001 RMSE versus percent labeled (%).</p> "> Figure 10
<p>FD004 RMSE versus percent labeled (%).</p> "> Figure 11
<p>FD001 Unsupervised Feature Learning, Random Labeling Intervals.</p> "> Figure 12
<p>FD001 Unsupervised Feature Learning, Random Labeling Intervals.</p> "> Figure 13
<p>Overview of PRONOSTIA [<a href="#B34-sensors-20-00176" class="html-bibr">34</a>].</p> "> Figure 14
<p>Raw Bearing 1-3 Data Signal Versus Time.</p> "> Figure 15
<p>Processed Spectrogram (STFT) Degradation Data for Bearing 1–3.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Generative Adversarial Networks
2.2. Variational Autoencoders
3. Proposed Methodology
3.1. Unsupervised Remaining Useful Life Formulation
3.2. Semi-Supervised Loss Function
4. Results and Discussion
4.1. Example of Application: Turbofan Engines
4.2. Ablation Study and Comparison Results
4.3. FEMTO Dataset Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malte, B.; Friederichsen, N.; Keller, M.; Rosenberg, N. How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. Int. J. Mech. Ind. Sci. Eng. 2014, 8, 37–44. [Google Scholar]
- Xiao-Sheng, S.; Wang, W.; Hu, C.H.; Zhou, D.H. Remaining useful life estimation–a review on the statistical data driven approaches. Eur. J. Oper. Res. 2011, 213, 1–14. [Google Scholar]
- Benjamin, V.D.; Droguett, E.L.; Meruane, V.; Modarres, M.; Ferrada, A. Deep semi-supervised generative adversarial fault diagnostics of rolling element bearings. Struct. Health Monit. 2019. [Google Scholar] [CrossRef]
- Malhotra, P.; TV, V.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. Multi-Sensor Prognostics using an Unsupervised Health Index based on LSTM Encoder-Decoder. arXiv 2016, arXiv:1608.06154. [Google Scholar]
- Mei, Y.; Wu, Y.; Lin, L. Fault diagnosis and remaining useful life estimation of aero engine using lstm neural network. In Proceedings of the IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 10–12 October 2016. [Google Scholar]
- Gugulothu. Available online: https://arxiv.org/abs/1709.01073 (accessed on 27 October 2017).
- Zhao, R.; Wang, J.; Yan, R.; Mao, K. Machine health monitoring with LSTM networks. In Proceedings of the International Conference on Sensing Technology, Nanjing, China, 11–13 November 2016. [Google Scholar]
- Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long Short-Term Memory Network for Remaining Useful Life estimation. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 88–95. [Google Scholar]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to monitor machine health with convolutional Bi-directional LSTM. Sensors 2017, 17, 273. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 2018, 257, 167–179. [Google Scholar] [CrossRef]
- Aydin, O.; Guldamlasioglu, S. Using LSTM networks to predict engine condition on large scale data processing framework. In Proceedings of the 2017 4th International Conference on Electrical and Electronics Engineering (ICEEE), Ankara, Turkey, 8–10 April 2017; pp. 281–285. [Google Scholar]
- Das Chagas Moura, M.; Droguett, E.L.; Firmino, P.R.A.; Ferreira, R.J. A competing risk model for dependent and imperfect condition–based preventive and corrective maintenances. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 2014, 228, 590–605. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, G.; Liu, Y.; Zhang, B.; Hu, C. Lithium-ion battery remaining useful life prediction with Deep Belief Network and Relevance Vector Machine. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017. [Google Scholar]
- Ren, L.; Cui, J.; Sun, Y.; Cheng, X. Multi-bearing remaining useful life collaborative prediction: A deep learning approach. J. Manuf. Syst. 2017, 43, 248–256. [Google Scholar] [CrossRef]
- Droguett, E.L.; Groen, F.; Mosleh, A. The combined use of data and expert estimates in population variability analysis. Reliab. Eng. Syst. Saf. 2004, 83, 311–321. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.-Q. Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks. Reliab. Eng. Syst. Saf. 2017, 172, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yoon Andre, S.; Lee, T.; Lim, Y.; Jung, D.; Kang, P.; Kim, D.; Park, K.; Choi, Y. Semi-supervised learning with deep generative models for asset failure prediction. arXiv 2017, arXiv:1709.00845. [Google Scholar]
- Boyuan, Y.; Liu, R.; Zio, E. Remaining useful life prediction based on a double-convolutional neural network architecture. IEEE Trans. Ind. Electron. 2019, 66, 9521–9530. [Google Scholar]
- Huang, Y.; Tang, Y.; VanZwieten, J.; Liu, J.; Xiao, X. An Adversarial Learning Approach for Machine Prognostic Health Management. In Proceedings of the 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD IS), Shenzhen, China, 9–11 May 2019. [Google Scholar]
- Justin, B.; Osendorfer, C. Learning stochastic recurrent networks. arXiv 2014, arXiv:1411.7610. [Google Scholar]
- Junyoung, C.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.C.; Bengio, Y. A recurrent latent variable model for sequential data. In Proceedings of the Advances in Neural Information Processing Systems 28, Quebec, QC, Canada, 7–12 December 2015; pp. 2980–2988. [Google Scholar]
- Krishnan, G.R.; Shalit, U.; Sontag, D. Structured inference networks for nonlinear state space models. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–10 February 2017. [Google Scholar]
- Maximilian, K.; Soelch, M.; Bayer, J.; Van Der Smagt, P. Deep variational bayes filters: Unsupervised learning of state space models from raw data. arXiv 2016, arXiv:1605.06432. [Google Scholar]
- Lars, M.; Nowozin, S.; Geiger, A. Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70. [Google Scholar]
- Zhiting, H.; Yang, Z.; Salakhutdinov, R.; Xing, E.P. On unifying deep generative models. arXiv 2017, arXiv:1706.00550. [Google Scholar]
- Hinton Geoffrey, E.; Dayan, P.; Frey, B.J.; Neal, R.M. The wake-sleep algorithm for unsupervised neural networks. Science 1995, 268, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Kingma Diederik, P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Ian, G.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Quebec, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Nash John, F. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Martin, G.; López Droguett, E.; Meruane, V.; das Chagas Moura, M. Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis. Struct. Health Monit. 2019, 18, 1092–1128. [Google Scholar] [CrossRef]
- Tim, S.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X.; Chen, X. Improved techniques for training gans. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2234–2242. [Google Scholar]
- Frederick Dean, K.; DeCastro, J.A.; Litt, J.S. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS); National Aeronautics and Space Administration: Washington, DC, USA, 2007.
- Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation. In Proceedings of the 2008 International Conference on Prognostics and Health Management (PHM08), Denver, CO, USA, 6–9 October 2008. [Google Scholar]
- Patrick, N.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnie, C. PRONOSTIA: An experimental platform for bearings accelerated degradation tests. In Proceedings of the IEEE International Conference on Prognostics and Health Management (PHM’12), Denver, CO, USA, 23–25 May 2012. [Google Scholar]
- Xiang, L.; Zhang, W.; Ding, Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliab. Eng. Syst. Saf. 2019, 182, 208–218. [Google Scholar]
Data Set | Train Trajectories | Test Trajectories | Operating Conditions | Fault Modes |
---|---|---|---|---|
FD001 | 100 | 100 | 1 (Sea Level) | 1 (HPC) |
FD002 | 260 | 259 | 6 | 1 (HPC) |
FD003 | 100 | 100 | 1 (Sea Level) | 2 (HPC, and Fan) |
FD004 | 248 | 249 | 6 | 2 (HPC, and Fan) |
Labeling | 1% | 5% | 10% | 20% | 50% | 100% |
---|---|---|---|---|---|---|
Fixed | 23.33 | 19.34 | 18.26 | 17.66 | 17.39 | 16.91 |
Random | 24.54 | 19.66 | 19.17 | 18.50 | 17.96 | 17.57 |
Labeling | 1% | 5% | 10% | 20% | 50% | 100% |
---|---|---|---|---|---|---|
Fixed | 20.50 | 18.50 | 17.47 | 16.37 | 15.82 | 15.44 |
Random | 21.20 | 18.33 | 16.50 | 16.06 | 15.54 | 15.27 |
Labeling | 1% | 5% | 10% | 20% | 50% | 100% |
---|---|---|---|---|---|---|
Fixed | 53.19 | 49.85 | 47.79 | 46.66 | 46.54 | 46.40 |
Random | 54.82 | 50.30 | 49.90 | 48.22 | 47.39 | 47.09 |
Labeling | 1% | 5% | 10% | 20% | 50% | 100% |
---|---|---|---|---|---|---|
Fixed | 45.76 | 41.36 | 39.90 | 38.76 | 38.56 | 38.18 |
Random | 46.80 | 40.73 | 39.46 | 37.98 | 36.93 | 36.26 |
Model | 1% | 5% | 10% | 20% | 50% | 100% |
---|---|---|---|---|---|---|
Proposed | 23.33 | 19.34 | 18.26 | 17.66 | 17.39 | 17.09 |
GAN | 28.77 | 24.38 | 22.90 | 22.16 | 21.80 | 21.73 |
VAE | 34.54 | 33.39 | 33.18 | 33.10 | 32.73 | 32.01 |
Model | 1% | 5% | 10% | 20% | 50% | 100% |
---|---|---|---|---|---|---|
Proposed | 24.54 | 19.66 | 19.17 | 18.50 | 17.96 | 17.57 |
GAN | 25.89 | 23.16 | 20.50 | 19.22 | 19.01 | 18.59 |
VAE | 34.82 | 33.58 | 33.37 | 33.38 | 32.84 | 32.44 |
Proposed | Krishnan | Fully Supervised NN | ||||
---|---|---|---|---|---|---|
Data Set | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. |
FD001 | 16.91 | 0.39 | 17.32 | 1.91 | 16.43 | 0.84 |
FD004 | 46.40 | 0.53 | 54.15 | 0.54 | 38.35 | 0.18 |
Condition | Load | Speed | Bearings | |||
---|---|---|---|---|---|---|
1 | 4000 | 1800 | 1–1 | 1–2 | 1–3 | 1–4 |
1–5 | 1–6 | 1–7 | ||||
2 | 4200 | 1650 | 2–1 | 2–2 | 2–3 | 2–4 |
2–5 | 2–6 | 2–7 | ||||
3 | 5000 | 1500 | 3–1 | 3–2 | 3–3 |
Bearing | 1% | 5% | 10% | 20% | 50% | 100% |
---|---|---|---|---|---|---|
1–3 | 11.32 | 11.10 | 10.96 | 10.36 | 7.50 | 6.59 |
2–4 | 10.13 | 9.92 | 8.65 | 7.28 | 6.77 | 6.42 |
3–1 | 31.90 | 27.42 | 23.73 | 20.08 | 15.02 | 11.51 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verstraete, D.; Droguett, E.; Modarres, M. A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics. Sensors 2020, 20, 176. https://doi.org/10.3390/s20010176
Verstraete D, Droguett E, Modarres M. A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics. Sensors. 2020; 20(1):176. https://doi.org/10.3390/s20010176
Chicago/Turabian StyleVerstraete, David, Enrique Droguett, and Mohammad Modarres. 2020. "A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics" Sensors 20, no. 1: 176. https://doi.org/10.3390/s20010176
APA StyleVerstraete, D., Droguett, E., & Modarres, M. (2020). A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics. Sensors, 20(1), 176. https://doi.org/10.3390/s20010176