Analytical Modeling for a Video-Based Vehicle Speed Measurement Framework
<p>Discrete positions of a moving vehicle in consecutive video frames and its relative position with respect to an intrusion line.</p> "> Figure 2
<p>The detection distance <math display="inline"><semantics> <mi mathvariant="sans-serif">Γ</mi> </semantics></math> after the first intrusion line <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> and the initial distance <math display="inline"><semantics> <mi>γ</mi> </semantics></math> of the detected vehicle for a hypothetical speed <span class="html-italic">v</span>.</p> "> Figure 3
<p>An example of a video-based speed measurement system with four intrusion lines placed at <math display="inline"><semantics> <msub> <mi>x</mi> <mi>m</mi> </msub> </semantics></math> and the video frames where the intrusions are detected <math display="inline"><semantics> <msub> <mi>f</mi> <mi>m</mi> </msub> </semantics></math>.</p> "> Figure 4
<p>An example of the results obtained by the analytical and simulation models with <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">n</mi> <mo> </mo> <mo>=</mo> <mo> </mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>6</mn> <mo>,</mo> <mo> </mo> <mn>12</mn> <mo>,</mo> <mo> </mo> <mn>18</mn> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">d</mi> <mo>=</mo> </mrow> </semantics></math> [0, 2.87 m, 5.95 m, 8.97 m] (<b>a</b>) the PDF from the analytical model; (<b>b</b>) the corresponding PDF from the simulation model; (<b>c</b>) the comparison between obtained PDFs.</p> "> Figure 5
<p>The performance evaluation graphs (<b>a</b>) For various input patterns for two intrusion lines. (<b>b</b>) Another illustration of three different movement patterns for two intrusion lines and their corresponding PDfs.</p> "> Figure 6
<p>Intrusion lines configurations, (<b>a</b>) two intrusion lines with <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">d</mi> <mo> </mo> <mo>=</mo> <mo> </mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>8.97</mn> </mrow> </semantics></math> m]; (<b>b</b>) three intrusion lines with <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">d</mi> <mo> </mo> <mo>=</mo> <mo> </mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>2.87</mn> </mrow> </semantics></math> m, 8.97 m]; (<b>c</b>) four intrusion lines with <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">d</mi> <mo> </mo> <mo>=</mo> <mo> </mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>2.87</mn> </mrow> </semantics></math> m, 5.95 m, 8.97 m].</p> "> Figure 7
<p>The computed PDFs for each attempt using different intrusion lines configurations (as described in <a href="#sensors-20-00160-f006" class="html-fig">Figure 6</a>), (<b>a</b>) actual speed <math display="inline"><semantics> <mrow> <mn>20.0</mn> </mrow> </semantics></math> m/s; (<b>b</b>) actual speed <math display="inline"><semantics> <mrow> <mn>22.7</mn> </mrow> </semantics></math> m/s; (<b>c</b>) actual speed <math display="inline"><semantics> <mrow> <mn>23.8</mn> </mrow> </semantics></math> m/s; (<b>d</b>) actual speed <math display="inline"><semantics> <mrow> <mn>27.3</mn> </mrow> </semantics></math> m/s.</p> ">
Abstract
:1. Introduction
2. Proposed Methodology
2.1. Analytical Model
2.2. Simulation Model
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ki, Y.K.; Baik, D.K. Model for Accurate Speed Measurement using Double-Loop Detectors. IEEE Trans. Veh. Technol. 2006, 55, 1094–1101. [Google Scholar] [CrossRef]
- Mei, T.X.; Li, H. Measurement of Absolute Vehicle Speed with a Simplified Inverse Model. IEEE Trans. Veh. Technol. 2010, 59, 1164–1171. [Google Scholar] [CrossRef]
- Lhomme-Desages, D.; Grand, C.; Amar, F.B.; Guinot, J.C. Doppler-based Ground Speed Sensor Fusion and Slip Control for a Wheeled Rover. IEEE/ASME Trans. Mechatron. 2009, 14, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Ki, Y.K. Speed-Measurement Model Utilising Embedded Triple-Loop Sensors. IET Intell. Transp. Syst. 2011, 5, 32–37. [Google Scholar] [CrossRef]
- Buch, N.; Velastin, S.A.; Orwell, J. A Review of Computer Vision Techniques for the Analysis of Urban Traffic. IEEE Trans. Intell. Transp. Syst. 2011, 12, 920–939. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, X.D.; Song, J.H.; Jin, S.; Kim, D.; Jeon, J.W. Compensating Background for Noise Due to Camera Vibration in Uncalibrated-Camera-Based Vehicle Speed Measurement System. IEEE Trans. Veh. Technol. 2011, 60, 30–43. [Google Scholar] [CrossRef]
- Celik, T.; Kusetogullari, H. Solar-Powered Automated Road Surveillance System for Speed Violation Detection. IEEE Trans. Ind. Electron. 2010, 57, 3216–3227. [Google Scholar] [CrossRef]
- Fernandez-Caballero, A.; Gomez, F.J.; Lopez-Lopez, J. Road-Traffic Monitoring by Knowledge-Driven Static and Dynamic Image Analysis. Expert Syst. Appl. 2008, 35, 701–719. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yin, L.; Jia, Y.; Wang, M. Vehicle speed measurement based on video images. In Proceedings of the 2008 3rd International Conference on Innovative Computing Information and Control, Dalian, China, 18–20 June 2008; p. 439. [Google Scholar] [CrossRef]
- Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A. Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Yang, B.; Xu, G.; Shi, D. A real-time vision system for automatic traffic monitoring based on 2D spatio-temporal images. In Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision 1996 (WACV’96), Sarasota, FL, USA, 2–4 December 1996; pp. 162–167. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Z.; Wu, J.; Liu, A. Virtual line group based video vehicle detection algorithm utilizing both luminance and chrominance. In Proceedings of the 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 23–25 May 2007; pp. 2854–2858. [Google Scholar] [CrossRef]
- Jeyabharathi, D.; Dejey, D. Vehicle Tracking and Speed Measurement System (VTSM) Based on Novel Feature Descriptor: Diagonal Hexadecimal Pattern (DHP). J. Vis. Commun. Image Represent. 2016, 40, 816–830. [Google Scholar] [CrossRef]
- Weng, M.; Huang, G.; Da, X. A new interframe difference algorithm for moving target detection. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; pp. 285–289. [Google Scholar] [CrossRef]
- Lan, J.; Li, J.; Hu, G.; Ran, B.; Wang, L. Vehicle Speed Measurement Based on Gray Constraint Optical Flow Algorithm. Optik 2014, 125, 289–295. [Google Scholar] [CrossRef]
- Zhao, P. Parallel Precise Speed Measurement for Multiple Moving Objects. Optik 2011, 122, 2011–2015. [Google Scholar] [CrossRef]
- Doan, S.; Temiz, M.S.; Klr, S. Real Time Speed Estimation of Moving Vehicles from Side View Images from an Uncalibrated Video Camera. Sensors 2010, 10, 4805–4824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luvizon, D.C.; Nassu, B.T.; Minetto, R. A Video-Based System for Vehicle Speed Measurement in Urban Roadways. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1393–1404. [Google Scholar] [CrossRef]
- Czajewski, W.; Iwanowski, M. Vision-based vehicle speed measurement method. In International Conference on Computer Vision and Graphics, 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 308–315. [Google Scholar]
- Schutte, J.; Scholz, S. Guideway Intrusion Detection. IEEE Veh. Technol. Mag. 2009, 4, 76–81. [Google Scholar] [CrossRef]
Actual Speed (m/s) | Lower-Upper (m/s) | Expected Value (m/s) | Standard Deviation (m/s) | Error (%) |
---|---|---|---|---|
20.0 | 19.5–21.4 | 20.4 | 0.38 | 2.00 |
22.7 | 21.4–23.6 | 22.4 | 0.46 | 1.32 |
23.8 | 22.4–24.9 | 23.6 | 0.51 | 0.84 |
27.3 | 24.9–28.0 | 26.4 | 0.63 | 3.29 |
av.: 0.50 | av.: 1.92 |
Actual Speed (m/s) | Lower-Upper (m/s) | Expected Value (m/s) | Standard Deviation (m/s) | Error (%) |
---|---|---|---|---|
20.0 | 19.5–21.4 | 20.4 | 0.38 | 2.00 |
22.7 | 21.8–23.6 | 22.6 | 0.40 | 0.44 |
23.8 | 23.5–23.9 | 23.7 | 0.09 | 0.42 |
27.3 | 25.4–28.0 | 26.7 | 0.58 | 2.20 |
av.: 0.40 | av.: 1.28 |
Actual Speed (m/s) | Lower-Upper (m/s) | Expected Value (m/s) | Standard Deviation (m/s) | Error (%) |
---|---|---|---|---|
20.0 | 19.8–21.3 | 20.5 | 0.34 | 2.50 |
22.7 | 22.0–23.6 | 22.9 | 0.35 | 0.88 |
23.8 | 23.5–23.9 | 23.7 | 0.09 | 0.42 |
27.3 | 25.7–28.0 | 27.0 | 0.51 | 1.10 |
av.: 0.35 | av.: 1.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahl, M.; Javadi, S. Analytical Modeling for a Video-Based Vehicle Speed Measurement Framework. Sensors 2020, 20, 160. https://doi.org/10.3390/s20010160
Dahl M, Javadi S. Analytical Modeling for a Video-Based Vehicle Speed Measurement Framework. Sensors. 2020; 20(1):160. https://doi.org/10.3390/s20010160
Chicago/Turabian StyleDahl, Mattias, and Saleh Javadi. 2020. "Analytical Modeling for a Video-Based Vehicle Speed Measurement Framework" Sensors 20, no. 1: 160. https://doi.org/10.3390/s20010160
APA StyleDahl, M., & Javadi, S. (2020). Analytical Modeling for a Video-Based Vehicle Speed Measurement Framework. Sensors, 20(1), 160. https://doi.org/10.3390/s20010160