PT-Level High-Sensitivity Magnetic Sensor with Amorphous Wire
<p>The magneto-impedance (MI) element composed of amorphous wire with an electrical connection between the amorphous and the AC high-frequency current.</p> "> Figure 2
<p>MI element composed of (Fe<sub>0.06</sub>Co<sub>0.94</sub>)<sub>72.5</sub>Si<sub>2.5</sub>B<sub>15</sub> (FeCoSiB) amorphous wire without the electrical connection with the amorphous wire.</p> "> Figure 3
<p>Signal amplitude of the magnetic sensor changing with the frequency of the AC bias current.</p> "> Figure 4
<p>Schematic diagram of the amorphous wire magnetic sensor with the inductor-capacitor (LC) resonant circuit. The resonant frequency was the same as the frequency of the AC bias current.</p> "> Figure 5
<p>Equivalent circuit of the resonant circuit.</p> "> Figure 6
<p>Signal amplitudes of the FeCoSiB amorphous wire magnetic sensor at different frequencies. a: the magnetic sensor without the resonant circuit. b: the magnetic sensor with the resonant circuit.</p> "> Figure 7
<p>Block diagram of the driving circuit for the FeCoSiB amorphous wire magnetic sensor with the resonant circuit. The resonant circuit was composed of an inductor L and a capacitor C, which was used to increase the signal amplitude of the magnetic sensor.</p> "> Figure 8
<p>FeCoSiB amorphous wire magnetic sensor and the driving circuit.</p> "> Figure 9
<p>Circuit board of the driving circuit for the FeCoSiB amorphous wire magnetic sensor.</p> "> Figure 10
<p>Magnetic response of the FeCoSiB amorphous wire magnetic sensor.</p> "> Figure 11
<p>Magnetic field noise spectrum of the FeCoSiB amorphous wire magnetic sensor measured in a permalloy shielding box.</p> "> Figure 12
<p>Output signal of the magnetic sensor for the applied magnetic field with a frequency of 630 Hz and the amplitude of 400 pT. A band-pass filter with a bandwidth of 100 Hz was used.</p> "> Figure 13
<p>The magnetic field noise of the magnetic sensor at 630 Hz with the observation bandwidth of about 100 Hz.</p> "> Figure 14
<p>DC magnetic field noise of the magnetic sensor with a 10 Hz low-pass filter.</p> "> Figure 15
<p>Magnetic field noise spectrum measured by the FeCoSiB amorphous wire magnetic sensor in the laboratory without shielding.</p> "> Figure 16
<p>Block diagram of the eddy current testing (ECT) system with the FeCoSiB amorphous wire magnetic sensor.</p> "> Figure 17
<p>The sample of the aluminum plate with three artificial slits with a width of 0.2 mm and depths of 1 mm, 0.5 mm, and 0.2 mm.</p> "> Figure 18
<p>2D graph of the scanning results.</p> ">
Abstract
:1. Introduction
2. PT-level High Sensitivity Magnetic Sensor with Resonant Circuit
3. Eddy Current Testing Using the FeCoSiB Amorphous Magnetic Sensor
4. Conclusions
Funding
Conflicts of Interest
References
- Panina, L.V.; Mohri, K. Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 1994, 65, 1189–1191. [Google Scholar] [CrossRef]
- Mohri, K.; Panina, L.V. Recent advances of micro magnetic sensors and sensing application. Sens. Actuators A Phys. 1997, 59, 1–8. [Google Scholar] [CrossRef]
- Vazquez, M.; Zhukov, A.P.; Aragoneses, P.; Arcas, J.; Garcia-Beneytez, J.M.; Marin, P.; Hernando, A. Magneto-impedance in glass-coated CoMnSiB amorphous microwires. IEEE Trans. Magn. 1998, 34, 724–728. [Google Scholar] [CrossRef]
- Mohri, K.; Honkura, Y. Amorphous wire and CMOS IC based magneto-impedance sensors—Origin, topics, and future. Sens. Lett. 2007, 5, 267–270. [Google Scholar] [CrossRef]
- Uehara, M.; Nakamura, N. Scanning magnetic microscope system utilizing a magneto-impedance sensor for a nondestructive diagnostic tool of geological samples. Rev. Sci. Instrum. 2007, 78. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.G.C.; Menard, D.; Yelon, A.; Ding, L.; Saez, S.; Dolabdjian, C. Optimization of the magnetic noise and sensitivity of giant magnetoimpedance sensors. J. Appl. Phys. 2008, 103. [Google Scholar] [CrossRef]
- Uchiyama, T.; Hamada, N.; Cai, C. Highly sensitive CMOS magnetoimpedance sensor using miniature multi-core head based on amorphous wire. IEEE Trans. Magn. 2014, 50. [Google Scholar] [CrossRef]
- Mohri, K.; Uchiyama, T.; Panina, L.V.; Yamamoto, M.; Bushida, K. Recent advances of amorphous wire CMOS IC magneto-impedance sensors: Innovative high-performance micromagnetic sensor chip. J. Sens. 2015. [Google Scholar] [CrossRef] [Green Version]
- Dolabdjian, C.; Menard, D. Giant magneto-Impedance (GMI) magnetometers. In High Sensitivity Magnetometers; Smart Sensors Measurement and Instrumentation; Grosz, A., HajiSheikh, M.J., Mukhopadhyay, S.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 19, pp. 103–126. [Google Scholar]
- Nakayama, S.; Atsuta, S.; Shinmia, T.; Uchiyama, T. Pulse-driven magnetoimpedance sensor detection of biomagnetic fields in musculatures with spontaneous electric activity. Biosens. Bioelectron. 2011, 27, 34–39. [Google Scholar] [CrossRef]
- Mohri, Y.; Uchiyama, T.; Yamada, M.; Mohri, K. Detection of back magneto-cardiogram for heart disease using pico-tesla resolution amorphous wire magneto-impedance sensor. In Proceedings of the PIERS, Guangzhou, China, 25–28 August 2014; pp. 871–874. [Google Scholar]
- Devkota, J.; Ruiz, A.; Mukherjee, P.; Srikanth, H.; Phan, M.H. Magneto-impedance biosensor with enhanced sensitivity for highly sensitive detection of nanomag-D beads. IEEE Trans. Magn. 2013, 49, 4060–4063. [Google Scholar] [CrossRef]
- Devkota, J.; Wingo, J.; Mai, T.T.T.; Nguyen, X.P.; Huong, N.T.; Mukherjee, P.; Srikanth, H.; Phan, M.H. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles. J. Appl. Phys. 2014, 115, 17B503. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Fernandez, E.; Safronov, A.P.; Svalov, A.V.; Beketov, I.; Beitia, A.B.; Garcia-Arribas, A.; Blyakhman, F.A. Giant magnetoimpedance biosensor for ferrogel detection: Model system to evaluate properties of natural tissue. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef]
- Gudoshnikov, S.; Usov, N.; Nozdrin, A.; Ipatov, M.; Zhukov, A.; Zhukova, V. Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glass-coated microwire. Phys. Status Solidi A Appl. Mater. Sci. 2014, 211, 980–985. [Google Scholar] [CrossRef]
- Traore, P.S.; Asfour, A.; Yonnet, J.P.; Dolabdjian, C.P. Noise performance of SDR-based off-diagonal GMI sensors. IEEE Sens. J. 2017, 17, 6175–6184. [Google Scholar] [CrossRef]
- Ma, J.J.; Uchiyama, T. Alpha rhythm and visual event-related fields measurements at room temperature using magneto-impedance sensor syste. IEEE Trans. Magn. 2019, 55. [Google Scholar] [CrossRef]
- Knobel, M.; Sanchez, M.L.; Velazquez, J.; Vazquez, M. Stress dependence of the giant magneto-impedance effect in amorphous wires. J. Phys. Condens. Matter 1995, 7, L115–L120. [Google Scholar] [CrossRef]
- Panina, L.V.; Sandacci, S.I.; Makhnovskiy, D.P. Stress effect on magnetoimpedance in amorphous wires at gigahertz frequencies and application to stress-tunable microwave composite materials. J. Appl. Phys. 2005, 97. [Google Scholar] [CrossRef] [Green Version]
- Nabias, J.; Asfour, A.; Yonnet, J.P. Effect of torsion stress on the offset and sensitivity of diagonal and off-diagonal GMI in amorphous wires. Sensors 2018, 18, 4121. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Shiwa, M. A magnetic sensor with amorphous wire. Sensors 2014, 14, 10644–10649. [Google Scholar] [CrossRef]
- Chen, Y.L.; Li, J.H.; Chen, J.W.; Xu, L.X. Improving the electrical contact performance for amorphous wire magnetic sensor by employing MEMS process. Micromachines 2018, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Mück, M.; Kreutzbruck, M.V.; Baby, U.; Heiden, C. Eddy current nondestructive material evaluation based on HTS SQUIDs. Phys. C Supercond. 1997, 282–287, 407–410. [Google Scholar] [CrossRef]
- He, D.F.; Shiwa, M.; Jia, J.P.; Takatsubo, J.; Moriya, S. Multi-frequency ECT with AMR sensor. NDT E Int. 2011, 44, 438–441. [Google Scholar] [CrossRef]
- Postolache, O.; Ribeiro, A.L.; Ramos, H.G. GMR array uniform eddy current probe for defect detection in conductive specimens. Measurement 2013, 46, 4369–4378. [Google Scholar] [CrossRef]
- He, D.; Wang, Z.; Kusano, M.; Watanabe, M. Evaluation of 3D-Printed titanium alloy using eddy current testing with high-sensitivity magnetic sensor. NDT E Int. 2019, 102, 90–95. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D. PT-Level High-Sensitivity Magnetic Sensor with Amorphous Wire. Sensors 2020, 20, 161. https://doi.org/10.3390/s20010161
He D. PT-Level High-Sensitivity Magnetic Sensor with Amorphous Wire. Sensors. 2020; 20(1):161. https://doi.org/10.3390/s20010161
Chicago/Turabian StyleHe, Dongfeng. 2020. "PT-Level High-Sensitivity Magnetic Sensor with Amorphous Wire" Sensors 20, no. 1: 161. https://doi.org/10.3390/s20010161
APA StyleHe, D. (2020). PT-Level High-Sensitivity Magnetic Sensor with Amorphous Wire. Sensors, 20(1), 161. https://doi.org/10.3390/s20010161