Adaptive Non-Stationary Fuzzy Time Series Forecasting with Bayesian Networks
<p>The flow chart of the proposed model.</p> "> Figure 2
<p>Original and first-order differenced time series for seventeen datasets. The top panel depicts the original time series data. The lower panel shows the first-order differenced time series.</p> "> Figure 3
<p>Error scatter plot produced by the proposed model for (<b>a</b>) BTC–USD time series, (<b>b</b>) Dow Jones time series, (<b>c</b>) ETH–USD time series, (<b>d</b>) EUR–GBP time series, (<b>e</b>) EUR–USD time series, (<b>f</b>) GBP–USD time series, (<b>g</b>) NASDAQ time series, (<b>h</b>) SP500<sub>a</sub> time series, (<b>i</b>) TAIEX time series.</p> "> Figure 4
<p>Error distribution histogram produced by the proposed model for (<b>a</b>) BTC–USD time series, (<b>b</b>) Dow Jones time series, (<b>c</b>) ETH–USD time series, (<b>d</b>) EUR–GBP time series, (<b>e</b>) EUR–USD time series, (<b>f</b>) GBP–USD time series, (<b>g</b>) NASDAQ time series, (<b>h</b>) SP500<sub>a</sub> time series, (<b>i</b>) TAIEX time series.</p> "> Figure 5
<p>Prediction intervals yielded by the proposed model and IE-BN-PWFTS for (<b>a</b>) TAIEX time series and (<b>b</b>) EUR–USD time series.</p> "> Figure 6
<p>Error scatter plot produced by the proposed model for (<b>a</b>) Sunspot time series, (<b>b</b>) MG time series, (<b>c</b>) SP500<sub>b</sub> time series, (<b>d</b>) Radio time series, (<b>e</b>) Lake time series, (<b>f</b>) CO<sub>2</sub> time series, (<b>g</b>) Milk time series, (<b>h</b>) DJ time series.</p> "> Figure 7
<p>Error distribution histogram produced by the proposed model for (<b>a</b>) Sunspot time series, (<b>b</b>) MG time series, (<b>c</b>) SP500<sub>b</sub> time series, (<b>d</b>) Radio time series, (<b>e</b>) Lake time series, (<b>f</b>) CO<sub>2</sub> time series, (<b>g</b>) Milk time series, (<b>h</b>) DJ time series.</p> ">
Abstract
:1. Introduction
- 1.
- We propose a novel hybrid FTSFM that integrates time-variant FTSFM, BN, and non-stationary fuzzy sets. The traditional time-variant FTSFM update strategy handles the dynamic update of fuzzy relationships. BN structure learning captures adaptive changes in temporal dependence relationships between specific time points. Non-stationary fuzzy sets address irregular changes in data imprecision. This multi-dimensional modeling strategy significantly enhances the model’s adaptability and forecasting accuracy for non-stationary time series.
- 2.
- We develop an adaptive BN structure updating method with a novel dynamic scoring mechanism. The proposed method enables continuous refinement of temporal dependence relationships while preserving crucial historical patterns, thereby achieving an optimal balance between stability and adaptability in temporal relationship modeling.
- 3.
- We introduce a novel non-stationary fuzzy set approach that enhances existing methods through an innovative residual-based perturbation mechanism. This perturbation function enables each fuzzy set to share the impact of prediction residuals through distinct displacement degrees, facilitating smooth transitions of fuzzy sets. It ensures the model’s sensitivity to changes in the vagueness of non-stationary time series while enhancing its stability.
2. Preliminaries
2.1. Basic Concepts of Fuzzy Time Series Model
2.2. Non-Stationary Fuzzy Set
2.3. Bayesian Network
3. Proposed Method
3.1. Training Procedure
Algorithm 1 Training procedure |
|
3.2. Forecasting Procedure
3.2.1. Non-Stationary Fuzzy Set Updating with New Perturbation Function
3.2.2. BN Structure Adaptive Updating
Algorithm 2 BN structure adaptive updating |
|
3.2.3. Integrated Forecasting Framework
Algorithm 3 Forecasting procedure |
|
Algorithm 4 Generate prediction for time point t |
|
4. Experiments
4.1. Experimental Design
4.2. Comparison with Non-Stationary Fuzzy Time Series Forecasting Models
4.3. Comparison with Batch Learning Models
4.4. Comparison Considering Multiple Time Series Together
4.5. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; He, Z.; Geng, T.; Huang, F.; Gong, P.; Yi, P.; Peng, J. State Causality and Adaptive Covariance Decomposition Based Time Series Forecasting. Sensors 2023, 23, 809. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guan, A.; Cheng, S. Double Decomposition and Fuzzy Cognitive Graph-Based Prediction of Non-Stationary Time Series. Sensors 2024, 24, 7272. [Google Scholar] [CrossRef] [PubMed]
- Tavares, T.H.B.D.C.; Ferreira, B.P.; Mendes, E.M.A.M. Fuzzy Time Series Model Based on Red–Black Trees for Stock Index Forecasting. Appl. Soft Comput. 2022, 127, 109323. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Wang, Y.; Lu, H. A Hesitant Fuzzy Wind Speed Forecasting System with Novel Defuzzification Method and Multi-Objective Optimization Algorithm. Expert Syst. Appl. 2021, 168, 114364. [Google Scholar] [CrossRef]
- Song, Q.; Chissom, B. Fuzzy Time Series and Its Model. Fuzzy Sets Syst. 1993, 54, 269–277. [Google Scholar] [CrossRef]
- Chen, S.M. Forecasting Enrollments Based on Fuzzy Time Series. Fuzzy Sets Syst. 1996, 81, 311–319. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, Australia, 2024. [Google Scholar]
- Tsay, R.S. Analysis of Financial Time Series, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bose, M.; Mali, K. Designing Fuzzy Time Series Forecasting Models: A Survey. Int. J. Approx. Reason. 2019, 111, 78–99. [Google Scholar] [CrossRef]
- De Lima Silva, P.C.; Sadaei, H.J.; Ballini, R.; Guimarães, F.G. Probabilistic Forecasting with Fuzzy Time Series. IEEE Trans. Fuzzy Syst. 2020, 28, 1771–1784. [Google Scholar] [CrossRef]
- Dixit, A.; Jain, S. Intuitionistic Fuzzy Time Series Forecasting Method for Non-Stationary Time Series Data with Suitable Number of Clusters and Different Window Size for Fuzzy Rule Generation. Inf. Sci. 2023, 623, 132–145. [Google Scholar] [CrossRef]
- Liang, X.; Wu, Z. Forecasting Tourist Arrivals Using Dual Decomposition Strategy and an Improved Fuzzy Time Series Method. Neural Comput. Appl. 2022, 35, 1–23. [Google Scholar] [CrossRef]
- Xian, S.; Lei, H.; Chen, K.; Li, Z. A Novel Fuzzy Time Series Model Based on Improved Sparrow Search Algorithm and CEEMDAN. Appl. Intell. 2023, 53, 11300–11327. [Google Scholar] [CrossRef]
- Carnelossi Furlaneto, D.; Oliveira, L.S.; Menotti, D.; Cavalcanti, G.D. Bias Effect on Predicting Market Trends with EMD. Expert Syst. Appl. 2017, 82, 19–26. [Google Scholar] [CrossRef]
- Song, Q.; Chissom, B.S. Forecasting Enrollments with Fuzzy Time Series—Part II. Fuzzy Sets Syst. 1994, 62, 1–8. [Google Scholar] [CrossRef]
- Hwang, J.-R.; Chen, S.-M.; Lee, C.-H. Handling Forecasting Problems Using Fuzzy Time Series. Fuzzy Sets Syst. 1998, 100, 217–228. [Google Scholar] [CrossRef]
- Liu, H.T.; Wei, N.C.; Yang, C.G. Improved Time-Variant Fuzzy Time Series Forecast. Fuzzy Optim. Decis. Mak. 2009, 8, 45–65. [Google Scholar] [CrossRef]
- Liu, H.T.; Wei, M.L. An Improved Fuzzy Forecasting Method for Seasonal Time Series. Expert Syst. Appl. 2010, 37, 6310–6318. [Google Scholar] [CrossRef]
- Huo, X.; Hao, K.; Chen, L.; Tang, X.s.; Wang, T.; Cai, X. A Dynamic Soft Sensor of Industrial Fuzzy Time Series with Propositional Linear Temporal Logic. Expert Syst. Appl. 2022, 201, 117176. [Google Scholar] [CrossRef]
- Yun, U.; Lee, G.; Yoon, E. Advanced Approach of Sliding Window Based Erasable Pattern Mining with List Structure of Industrial Fields. Inf. Sci. 2019, 494, 37–59. [Google Scholar] [CrossRef]
- Garibaldi, J.M.; Jaroszewski, M.; Musikasuwan, S. Nonstationary Fuzzy Sets. IEEE Trans. Fuzzy Syst. 2008, 16, 1072–1086. [Google Scholar] [CrossRef]
- Alves, M.A.; De Lima e Silva, P.C.; Severiano, C.A., Jr.; Vieira, G.L.; Guimarães, F.G.; Sadaei, H.J. An Extension of Nonstationary Fuzzy Sets to Heteroskedastic Fuzzy Time Series. In Proceedings of the ESANN: 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 25–27 April 2018. [Google Scholar]
- De Lima e Silva, P.C.; Severiano, C.A.; Alves, M.A.; Silva, R.; Weiss Cohen, M.; Guimarães, F.G. Forecasting in Non-Stationary Environments with Fuzzy Time Series. Appl. Soft Comput. 2020, 97, 106825. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zhang, B. A Fuzzy Time Series Forecasting Model with Both Accuracy and Interpretability Is Used to Forecast Wind Power. Appl. Energy 2024, 353, 122015. [Google Scholar] [CrossRef]
- Wong, W.-K.; Bai, E.; Chu, A.W. Adaptive Time-Variant Models for Fuzzy-Time-Series Forecasting. IEEE Trans. Syst. Man. Cybern. Part 2010, 40, 1531–1542. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Chen, T.; Teoh, H.; Chiang, C. Fuzzy Time-Series Based on Adaptive Expectation Model for TAIEX Forecasting. Expert Syst. Appl. 2008, 34, 1126–1132. [Google Scholar] [CrossRef]
- Kmenta, J. Elements of Econometrics, 2nd ed.; University of Michigan Press: Ann Arbor, MI, USA, 1997. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Y.; Li, Y. A Volatility Model Based on Adaptive Expectations: An Improvement on the Rational Expectations Model. Int. Rev. Financ. Anal. 2022, 82, 102202. [Google Scholar] [CrossRef]
- Cheng, C.H.; Yang, J.H. Fuzzy Time-Series Model Based on Rough Set Rule Induction for Forecasting Stock Price. Neurocomputing 2018, 302, 33–45. [Google Scholar] [CrossRef]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar] [CrossRef]
- Zuo, Y.; Kita, E. Stock Price Forecast Using Bayesian Network. Expert Syst. Appl. 2012, 39, 6729–6737. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Y.; Zhang, F.; Coskun, S.; Liu, K.; Li, G. Stochastic Speed Prediction for Connected Vehicles Using Improved Bayesian Networks with Back Propagation. Sci. China Technol. Sci. 2022, 65, 1524–1536. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Chi, M.; Li, Y. Bayesian Network Based Probabilistic Weighted High-Order Fuzzy Time Series Forecasting. Expert Syst. Appl. 2024, 237, 121430. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Zhao, S.; Tan, S. Stock Market Trend Prediction Using Dynamical Bayesian Factor Graph. Expert Syst. Appl. 2015, 42, 6267–6275. [Google Scholar] [CrossRef]
- Heckerman, D. A Tutorial on Learning with Bayesian Networks. Learn. Graph. Model. 1998, 301–354. [Google Scholar]
- Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- De Lima Silva, P.C. NSFTS Data [Dataset]. 2020. Available online: https://github.com/PYFTS/NSFTS (accessed on 31 November 2024).
- Yang, S.; Liu, J. Wavelet-HFCM Data [Dataset]. 2018. Available online: https://github.com/yangysc/Wavelet-HFCM (accessed on 31 November 2024).
- Yang, S.; Liu, J. Time-Series Forecasting Based on High-Order Fuzzy Cognitive Maps and Wavelet Transform. IEEE Trans. Fuzzy Syst. 2018, 26, 3391–3402. [Google Scholar] [CrossRef]
- Theil, H. Applied Economic Forecasting; Rand McNally: Chicago, IL, USA, 1966. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Saleena, A.J.; John, C.J.; Lincy, G.R.M. A Phase-Cum-Time Variant Fuzzy Time Series Model for Forecasting Non-Stationary Time Series and Its Application to the Stock Market. IEEE Access 2024, 12, 188373–188385. [Google Scholar] [CrossRef]
- Kasabov, N.; Song, Q. DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 2002, 10, 144–154. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Wu, K. CNN-FCM: System Modeling Promotes Stability of Deep Learning in Time Series Prediction. Knowl.-Based Syst. 2020, 203, 106081. [Google Scholar] [CrossRef]
- Ferreira, M.V.D.S.; Rios, R.; Mello, R.; Rios, T.N. Using fuzzy clustering to address imprecision and uncertainty present in deterministic components of time series. Appl. Soft Comput. 2021, 113, 108011. [Google Scholar] [CrossRef]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Friedman, M. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. Ann. Math. Stat. 1940, 11, 86–92. [Google Scholar] [CrossRef]
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
Dataset | Description | Number |
---|---|---|
TAIEX [37] | Daily averages of open, high, low, and close prices for the Dow Jones Industrial Average | 4000 |
SP500a [37] | Daily averages of open, high, low, and close prices for the S&P 500 stock index | 4000 |
NASDAQ [37] | Daily averages of open, high, low, and close prices for the National Association of Securities Dealers Automated Quotations Composite Index | 4000 |
Dow Jones [37] | Daily averages of the Dow Jones Industrial Index’s open, high, low, and close prices | 4000 |
BTC–USD [37] | Daily cryptocurrency exchange rates for Bitcoin quoted in US Dollars | 2968 |
ETH–USD [37] | Daily cryptocurrency exchange rates for Ethereum quoted in US Dollars | 1121 |
EUR–GBP [37] | FOREX data, including daily average quotations for Euro to Great British Pound | 5000 |
EUR–USD [37] | FOREX data, including daily average quotations for US Dollar to Euro | 5000 |
GBP–USD [37] | FOREX data, including daily average quotations for Great British Pound to US Dollar | 5000 |
Sunspot [38] | Yearly sunspot count | 288 |
MG [38] | Obtained by solving a first-order nonlinear differential-delay equation via the fourth-order Runge–Kutta algorithm | 1000 |
SP500b [38] | Daily open prices of the S&P 500 stock index | 251 |
Milk [38] | Milk production in pounds on a monthly basis | 168 |
DJ [38] | Monthly close prices for the Dow Jones industrial index | 291 |
Radio [38] | Highest permitted radio frequency for broadcasting in Washington, DC, USA | 240 |
CO2 [38] | CO2 measurements at Mauna Loa | 192 |
Lake [38] | Monthly level of Lake Erie | 680 |
Dataset | Original Time Series | First Order Differenced Time Series | ||||||
---|---|---|---|---|---|---|---|---|
ADF Test p Value | Test Result | Levene’s Test p Value | Test Result | ADF Test p Value | Test Result | Levene’s Test p Value | Test Result | |
TAIEX | 0.1175 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
SP500 | 0.7733 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
NASDAQ | 0.9841 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
Dow Jones | 0.8189 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
BTC–USD | 0.6710 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
ETH–USD | 0.3546 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
EUR–GBP | 0.4537 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
EUR–USD | 0.3579 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
GBP–USD | 0.7022 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
Sunspot | 0.1462 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
MG | 0.0000 | Rejected | 0.9164 | Accepted | 0.0000 | Rejected | 0.9018 | Accepted |
SP500 | 0.8298 | Accepted | 0.0000 | Rejected | 0.0000 | Rejected | 0.0000 | Rejected |
Milk | 0.6274 | Accepted | 0.0102 | Rejected | 0.0301 | Rejected | 0.0110 | Rejected |
DJ | 0.3550 | Accepted | 0.0023 | Rejected | 0.0000 | Rejected | 0.0028 | Rejected |
Radio | 0.2491 | Accepted | 0.0001 | Rejected | 0.0102 | Rejected | 0.0000 | Rejected |
CO2 | 0.9964 | Accepted | 0.0000 | Rejected | 0.0001 | Rejected | 0.0000 | Rejected |
Lake | 0.1109 | Accepted | 0.0135 | Rejected | 0.0000 | Rejected | 0.0098 | Rejected |
Dataset | TV-PWFTS | IE-PWFTS | IE-BN-PWFTS | TV-BN-PWFTS | NSFTS | TV-NS-BN-PWFTS |
---|---|---|---|---|---|---|
TAIEX | 123.9999 | 1018.5415 | 95.2133 | 137.1233 | 107.4994 | 92.9266 |
SP500a | 8.8415 | 42.5027 | 7.2578 | 13.2580 | 7.8307 | 7.1490 |
NASDAQ | 35.0900 | 202.5477 | 28.0960 | 43.5705 | 33.7277 | 27.5051 |
Dow Jones | 69.5462 | 284.9341 | 57.9956 | 104.4958 | 62.6613 | 57.7796 |
BTC–USD | 306.1626 | 1364.0944 | 142.1741 | 197.9182 | 151.4576 | 138.6654 |
ETH–USD | 44.5400 | 158.8328 | 18.8919 | 27.8365 | 19.3987 | 18.3194 |
EUR–USD | 0.0069 | 0.0190 | 0.0061 | 0.0117 | 0.0064 | 0.0060 |
EUR–GBP | 0.0035 | 0.0048 | 0.0031 | 0.0061 | 0.0032 | 0.0031 |
GBP–USD | 0.0083 | 0.0283 | 0.0072 | 0.0141 | 0.0092 | 0.0070 |
Dataset | TV-PWFTS | IE-PWFTS | IE-BN-PWFTS | TV-BN-PWFTS | NSFTS | TV-NS-BN-PWFTS |
---|---|---|---|---|---|---|
TAIEX | 1.4122 | 10.7081 | 1.0428 | 1.5246 | 1.2096 | 1.0174 |
SP500a | 0.6130 | 1.9956 | 0.4914 | 0.9442 | 0.5505 | 0.4881 |
NASDAQ | 0.9000 | 4.0233 | 0.7558 | 1.1891 | 0.9791 | 0.7534 |
Dow Jones | 0.6054 | 1.6009 | 0.5049 | 0.9514 | 0.5755 | 0.5120 |
BTC–USD | 6.5868 | 36.2601 | 2.4370 | 3.7092 | 3.0203 | 2.5151 |
ETH–USD | 7.3500 | 37.0502 | 3.4305 | 4.8608 | 3.8407 | 3.4196 |
EUR–USD | 0.3892 | 0.9249 | 0.3425 | 0.6631 | 0.3642 | 0.3402 |
EUR–GBP | 0.3122 | 0.3230 | 0.2725 | 0.5499 | 0.2798 | 0.2696 |
GBP–USD | 0.3630 | 0.8986 | 0.3163 | 0.6325 | 0.3881 | 0.3114 |
Dataset | TV-PWFTS | IE-PWFTS | IE-BN-PWFTS | TV-BN-PWFTS | NSFTS | TV-NS-BN-PWFTS |
---|---|---|---|---|---|---|
TAIEX | 1.3047 | 10.7687 | 1.0016 | 1.4497 | 1.1420 | 0.9870 |
SP500a | 1.1164 | 5.4013 | 0.9164 | 1.6742 | 1.0019 | 0.9144 |
NASDAQ | 1.2500 | 7.2834 | 1.0102 | 1.5615 | 1.2154 | 0.9913 |
Dow Jones | 1.1043 | 4.5522 | 0.9207 | 1.6689 | 1.0062 | 0.9275 |
BTC–USD | 1.9831 | 8.9213 | 0.9205 | 1.2916 | 0.9999 | 0.9151 |
ETH–USD | 2.0600 | 7.9795 | 0.9487 | 1.3920 | 1.0003 | 0.9432 |
EUR–USD | 1.1296 | 3.1134 | 0.9902 | 1.9032 | 1.0476 | 0.9845 |
EUR–GBP | 1.1054 | 1.4879 | 0.9669 | 1.8933 | 1.0055 | 0.9745 |
GBP–USD | 1.1247 | 3.8410 | 0.9789 | 1.9140 | 1.2580 | 0.9581 |
Dataset | RMSE | MAPE | ||||||
---|---|---|---|---|---|---|---|---|
NSFTS | DENFIS | PTVFTS | TV-NS-BN-PWFTS | NSFTS | DENFIS | PTVFTS | TV-NS-BN-PWFTS | |
NASDAQ-2017 | 108.7284 | 239.1259 | 48.1924 | 36.8277 | 1.3742 | 2.9002 | 0.5577 | 0.4102 |
NASDAQ-2018 | 176.4645 | 632.8676 | 115.4398 | 136.8919 | 1.8796 | 6.9452 | 1.1441 | 1.5356 |
NASDAQ-2019 | 142.2725 | 443.8779 | 81.5571 | 42.4718 | 1.4696 | 4.2853 | 0.7909 | 0.3875 |
NASDAQ-2020 | 268.2565 | 869.2766 | 199.9467 | 96.4991 | 1.9631 | 5.9934 | 1.4795 | 0.5843 |
NASDAQ-2021 | 295.9192 | 679.2459 | 159.6753 | 199.3805 | 1.5915 | 3.6026 | 0.8272 | 1.0269 |
NASDAQ-2022 | 284.4377 | 481.7911 | 238.0055 | 204.9993 | 2.1808 | 3.5995 | 1.6000 | 1.3231 |
SP500-2017 | 24.8333 | 78.8404 | 13.0605 | 9.9889 | 0.7286 | 2.4440 | 0.3908 | 0.2895 |
SP500-2018 | 51.3791 | 187.3747 | 31.8340 | 41.7365 | 1.5853 | 5.4565 | 0.8731 | 1.2067 |
SP500-2019 | 52.9810 | 125.7938 | 24.2265 | 12.6155 | 1.5685 | 3.3177 | 0.6088 | 0.3087 |
SP500-2020 | 74.2154 | 202.9605 | 60.1607 | 24.4032 | 1.8372 | 4.7154 | 1.4894 | 0.5327 |
SP500-2021 | 87.8825 | 190.3767 | 40.0989 | 44.8478 | 1.6162 | 3.3508 | 0.7340 | 0.7523 |
SP500-2022 | 83.9869 | 185.1545 | 64.8664 | 58.3521 | 1.7117 | 3.9391 | 1.2873 | 1.0746 |
Dow Jones-2017 | 155.6373 | 1099.0488 | 105.9790 | 101.4949 | 0.4887 | 3.7595 | 0.3769 | 0.3240 |
Dow Jones-2018 | 460.0347 | 1473.7939 | 300.8507 | 402.6199 | 1.4994 | 4.5950 | 0.8755 | 1.2875 |
Dow Jones-2019 | 512.6081 | 632.8676 | 234.7223 | 125.2802 | 1.7099 | 6.9452 | 0.6574 | 0.3313 |
Dow Jones-2020 | 606.3734 | 885.0938 | 515.7433 | 249.5781 | 1.7313 | 2.6101 | 1.5478 | 0.6366 |
Dow Jones-2021 | 610.8571 | 1023.9746 | 283.7141 | 308.0270 | 1.5315 | 2.3345 | 0.6558 | 0.6414 |
Dow Jones-2022 | 587.7988 | 2435.7356 | 445.4243 | 393.2805 | 1.4833 | 6.1544 | 1.1168 | 0.8883 |
TAIEX-2017 | 172.0256 | 218.0463 | 64.5821 | 65.0468 | 1.4130 | 1.6605 | 0.4914 | 0.4982 |
TAIEX-2018 | 163.9537 | 623.0989 | 109.0077 | 91.3104 | 1.1107 | 4.6290 | 0.7166 | 0.7262 |
TAIEX-2019 | 179.5368 | 514.1494 | 77.9204 | 67.5768 | 1.3398 | 3.6155 | 0.5358 | 0.4666 |
TAIEX-2020 | 218.2937 | 961.8291 | 145.8409 | 116.1398 | 1.3034 | 5.7339 | 0.9152 | 0.6687 |
TAIEX-2021 | 221.4625 | 679.2459 | 159.8782 | 100.8645 | 1.0444 | 3.6026 | 0.7338 | 0.4578 |
TAIEX-2022 | 323.6182 | 1006.9976 | 233.6213 | 174.7879 | 1.8401 | 5.8642 | 1.2132 | 0.9504 |
CO2 | DJ | Lake | MG | Milk | Radio | SP500b | Sunspot | |
---|---|---|---|---|---|---|---|---|
RNN | 1.4190 | 26.2320 | 0.3740 | 0.0010 | 29.2530 | 0.6130 | 27.8960 | 19.2920 |
ANFIS | 0.9100 | 27.5260 | 0.4580 | 0.0010 | 9.5780 | 0.6510 | 14.9350 | 22.7530 |
LSTM | 2.1600 | 26.9360 | 0.3840 | 0.0010 | 32.7430 | 0.5900 | 46.2660 | 19.0060 |
ANN | 1.6950 | 28.5320 | 0.4020 | 0.0050 | 27.1130 | 0.6520 | 17.6960 | 19.9010 |
AR | 1.3500 | 29.8220 | 0.6380 | 0.0350 | 57.7170 | 0.9020 | 17.8970 | 35.2620 |
MAR | 0.8120 | 26.7330 | 0.3900 | 0.0020 | 37.8380 | 0.6620 | 16.0410 | 19.1860 |
GRU | 1.5610 | 25.2110 | 0.3850 | 0.0010 | 36.0940 | 0.8320 | 20.4070 | 19.4080 |
TCN | 3.1200 | 25.2140 | 0.4090 | 0.0010 | 33.8580 | 0.6020 | 51.2670 | 22.4490 |
Wavelet-HFCM | 0.5600 | 23.1590 | 0.3770 | 0.0040 | 8.2580 | 0.5470 | 16.1050 | 18.9160 |
CNN-FCM | 0.7310 | 25.1900 | 0.3910 | 0.0010 | 30.4740 | 0.5670 | 20.8160 | 17.9490 |
PWFTS | 0.4884 | 22.6454 | 0.3816 | 0.0050 | 8.3004 | 0.3705 | 11.6922 | 23.6950 |
BN-PWFTS | 0.3412 | 22.9275 | 0.3663 | 0.0013 | 6.0392 | 0.3290 | 11.7978 | 18.8784 |
TV-NS-BN-PWFTS | 0.3757 | 22.5617 | 0.3692 | 0.0018 | 6.1244 | 0.3289 | 11.5956 | 17.5088 |
CEEMDAN-ISSA-FTS | Chen | ARIMA | Prophet | EMD-FC-FTS | Wavelet-HFCM | TV-NS-BN-PWFTS | |
---|---|---|---|---|---|---|---|
RMSE | 45.8600 | 80.4000 | 97.6200 | 120.0600 | 126.9500 | 74.4300 | 29.3285 |
MAPE | 1.2200 | 2.3300 | 2.7300 | 3.4800 | 3.4700 | 2.1200 | 0.7574 |
Dataset | TV-PWFTS | IE-PWFTS | IE-BN-PWFTS | TV-BN-PWFTS | NSFTS | TV-NS-BN-PWFTS |
---|---|---|---|---|---|---|
TAIEX | 4.00 | 6.00 | 2.00 | 5.00 | 3.00 | 1.00 |
SP500 | 4.00 | 6.00 | 2.00 | 5.00 | 3.00 | 1.00 |
NASDAQ | 4.00 | 6.00 | 2.00 | 5.00 | 3.00 | 1.00 |
Dow Jones | 4.00 | 6.00 | 2.00 | 5.00 | 3.00 | 1.00 |
BTC–USD | 5.00 | 6.00 | 2.00 | 4.00 | 3.00 | 1.00 |
ETH–USD | 5.00 | 6.00 | 2.00 | 4.00 | 3.00 | 1.00 |
EUR–USD | 4.00 | 6.00 | 2.00 | 5.00 | 3.00 | 1.00 |
EUR–GBP | 4.00 | 5.00 | 1.50 | 6.00 | 3.00 | 1.50 |
GBP–USD | 3.00 | 6.00 | 2.00 | 5.00 | 4.00 | 1.00 |
Average | 4.11 | 5.89 | 1.94 | 4.89 | 3.11 | 1.06 |
Comparison | z-Value | p-Value | |
---|---|---|---|
1 | TV-NS-BN-PWFTS vs. IE-PWFTS | 5.4805 | 0.0000 |
2 | TV-NS-BN-PWFTS vs. TV-BN-PWFTS | 4.3466 | 0.0000 |
3 | TV-NS-BN-PWFTS vs. TV-PWFTS | 3.4647 | 0.0027 |
4 | TV-NS-BN-PWFTS vs. NSFTS | 2.3308 | 0.0198 |
5 | TV-NS-BN-PWFTS vs. IE-BN-PWFTS | 1.0079 | 0.9405 |
Methods | CO2 | DJ | Lake | MG | Milk | Radio | SP500b | Sunspot | Average |
---|---|---|---|---|---|---|---|---|---|
RNN | 9.00 | 8.00 | 3.00 | 3.50 | 7.00 | 8.00 | 11.00 | 7.00 | 7.06 |
ANFIS | 7.00 | 11.00 | 12.00 | 3.50 | 5.00 | 9.00 | 4.00 | 11.00 | 7.81 |
LSTM | 12.00 | 10.00 | 6.00 | 3.50 | 9.00 | 6.00 | 12.00 | 5.00 | 7.94 |
ANN | 11.00 | 12.00 | 10.00 | 11.50 | 6.00 | 10.00 | 7.00 | 9.00 | 9.56 |
AR | 8.00 | 13.00 | 13.00 | 13.00 | 13.00 | 13.00 | 8.00 | 13.00 | 11.75 |
MAR | 6.00 | 9.00 | 8.00 | 9.00 | 12.00 | 11.00 | 5.00 | 6.00 | 8.25 |
GRU | 10.00 | 6.00 | 7.00 | 3.50 | 11.00 | 12.00 | 9.00 | 8.00 | 8.31 |
TCN | 13.00 | 7.00 | 11.00 | 3.50 | 10.00 | 7.00 | 13.00 | 10.00 | 9.31 |
Wavelet-HFCM | 4.00 | 4.00 | 4.00 | 10.00 | 3.00 | 4.00 | 6.00 | 4.00 | 4.88 |
CNN-FCM | 5.00 | 5.00 | 9.00 | 3.50 | 8.00 | 5.00 | 10.00 | 2.00 | 5.94 |
PWFTS | 3.00 | 2.00 | 5.00 | 11.50 | 4.00 | 3.00 | 2.00 | 12.00 | 5.31 |
BN-PWFTS | 1.00 | 3.00 | 1.00 | 7.00 | 1.00 | 2.00 | 3.00 | 3.00 | 2.62 |
TV-NS-BN-PWFTS | 2.00 | 1.00 | 2.00 | 8.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.25 |
Comparison | z-Value | p-Value | |
---|---|---|---|
1 | TV-NS-BN-PWFTS vs. AR | 4.8787 | 0.0000 |
2 | TV-NS-BN-PWFTS vs. TCN | 3.6270 | 0.0014 |
3 | TV-NS-BN-PWFTS vs. ANN | 3.7554 | 0.0016 |
4 | TV-NS-BN-PWFTS vs. GRU | 3.1134 | 0.0111 |
5 | TV-NS-BN-PWFTS vs. MAR | 3.0813 | 0.0144 |
6 | TV-NS-BN-PWFTS vs. LSTM | 2.9208 | 0.0349 |
7 | TV-NS-BN-PWFTS vs. ANFIS | 2.8566 | 0.0471 |
8 | TV-NS-BN-PWFTS vs. RNN | 2.4715 | 0.1615 |
9 | TV-NS-BN-PWFTS vs. CNN-FCM | 1.8937 | 0.1748 |
10 | TV-NS-BN-PWFTS vs. PWFTS | 1.5728 | 0.2316 |
11 | TV-NS-BN-PWFTS vs. Wavelet-HFCM | 1.3481 | 0.7105 |
12 | TV-NS-BN-PWFTS vs. BN-PWFTS | 0.1926 | 0.8473 |
TAIEX | SP500 | NASDAQ | Dow Jones | BTC–USD | ETH–USD | EUR–USD | EUR–GBP | GBP–USD | ||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | TV-BN-PWFTS | 317.2940 | 18.8346 | 44.6259 | 144.3049 | 344.3751 | 48.5997 | 0.0343 | 0.0134 | 0.0312 |
TV-BN-PWFTS (NSFS) | 94.7724 | 7.7763 | 27.8757 | 62.1150 | 156.4451 | 19.4565 | 0.0061 | 0.0032 | 0.0074 | |
TV-BN-PWFTS (adaptive) | 93.8905 | 7.1645 | 28.2721 | 56.5443 | 141.0029 | 20.6079 | 0.0060 | 0.0031 | 0.0071 | |
TV-NS-BN-PWFTS | 92.9266 | 7.1490 | 27.5051 | 57.7796 | 138.6654 | 18.3194 | 0.0060 | 0.0031 | 0.0070 | |
MAPE | TV-BN-PWFTS | 3.5785 | 1.3729 | 1.2272 | 1.2636 | 6.8562 | 9.2859 | 2.1052 | 1.2701 | 1.3969 |
TV-BN-PWFTS (NSFS) | 1.0378 | 0.5341 | 0.7658 | 0.5523 | 2.6283 | 3.5073 | 0.3450 | 0.2760 | 0.3203 | |
TV-BN-PWFTS (adaptive) | 1.0215 | 0.4828 | 0.7659 | 0.5012 | 2.5094 | 3.4801 | 0.3409 | 0.2728 | 0.3160 | |
TV-NS-BN-PWFTS | 1.0174 | 0.4881 | 0.7534 | 0.5120 | 2.5151 | 3.4196 | 0.3402 | 0.2696 | 0.3114 | |
U | TV-BN-PWFTS | 3.3514 | 2.3902 | 1.6019 | 2.2860 | 2.2215 | 2.4291 | 5.6060 | 4.1973 | 4.2130 |
TV-BN-PWFTS (NSFS) | 1.0065 | 0.9947 | 1.0047 | 0.9972 | 1.0325 | 1.0018 | 1.0040 | 1.0042 | 1.0021 | |
TV-BN-PWFTS (adaptive) | 0.9972 | 0.9164 | 1.0190 | 0.9077 | 0.9306 | 1.0611 | 0.9873 | 0.9741 | 0.9714 | |
TV-NS-BN-PWFTS | 0.9870 | 0.9144 | 0.9913 | 0.9275 | 0.9151 | 0.9432 | 0.9845 | 0.9745 | 0.9581 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Liu, X. Adaptive Non-Stationary Fuzzy Time Series Forecasting with Bayesian Networks. Sensors 2025, 25, 1628. https://doi.org/10.3390/s25051628
Wang B, Liu X. Adaptive Non-Stationary Fuzzy Time Series Forecasting with Bayesian Networks. Sensors. 2025; 25(5):1628. https://doi.org/10.3390/s25051628
Chicago/Turabian StyleWang, Bo, and Xiaodong Liu. 2025. "Adaptive Non-Stationary Fuzzy Time Series Forecasting with Bayesian Networks" Sensors 25, no. 5: 1628. https://doi.org/10.3390/s25051628
APA StyleWang, B., & Liu, X. (2025). Adaptive Non-Stationary Fuzzy Time Series Forecasting with Bayesian Networks. Sensors, 25(5), 1628. https://doi.org/10.3390/s25051628